高三常用的數(shù)學(xué)公式總結(jié)4篇_第1頁
高三常用的數(shù)學(xué)公式總結(jié)4篇_第2頁
高三常用的數(shù)學(xué)公式總結(jié)4篇_第3頁
高三常用的數(shù)學(xué)公式總結(jié)4篇_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高三常用的數(shù)學(xué)公式總結(jié)4篇高三會(huì)教給我們奮斗,每個(gè)人都有無盡的潛力,每一個(gè)人都有無窮的提升空間,不經(jīng)過一年血戰(zhàn),或許我們永久發(fā)覺不了自己身上隱藏的能量。讀書破萬卷下筆如有神,以下內(nèi)容是作者為您帶來的4篇《高三常用的數(shù)學(xué)公式總結(jié)》。

高三數(shù)學(xué)公式篇一

常用的誘導(dǎo)公式有以下幾組:

公式一:

設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:

設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數(shù)值之間的關(guān)系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

高三數(shù)學(xué)公式篇二

立體幾何公式

名稱符號(hào)面積S體積V

正方體a——邊長(zhǎng)S=6a^2V=a^3

長(zhǎng)方體a——長(zhǎng)S=2(ab+ac+bc)V=abc

b——寬

c——高

棱柱S——底面積V=Sh

h——高

棱錐S——底面積V=Sh/3

h——高

棱臺(tái)S1和S2——上、下底面積V=h〔S1+S2+√(S1^2)/2〕/3

h——高

擬柱體S1——上底面積V=h(S1+S2+4S0)/6

S2——下底面積

S0——中截面積

h——高

圓柱r——底半徑C=2πrV=S底h=∏rh

h——高

C——底面周長(zhǎng)

S底——底面積S底=πR^2

S側(cè)——側(cè)面積S側(cè)=Ch

S表——表面積S表=Ch+2S底

S底=πr^2

空心圓柱R——外圓半徑

r——內(nèi)圓半徑

h——高V=πh(R^2-r^2)

直圓錐r——底半徑

h——高V=πr^2h/3

圓臺(tái)r——上底半徑

R——下底半徑

h——高V=πh(R^2+Rr+r^2)/3

球r——半徑

d——直徑V=4/3πr^3=πd^2/6

球缺h——球缺高

r——球半徑

a——球缺底半徑a^2=h(2r-h)V=πh(3a^2+h^2)/6=πh2(3r-h)/3

球臺(tái)r1和r2——球臺(tái)上、下底半徑

h——高V=πh[3(r12+r22)+h2]/6

圓環(huán)體R——環(huán)體半徑

D——環(huán)體直徑

r——環(huán)體截面半徑

d——環(huán)體截面直徑V=2π^2Rr^2=π^2Dd^2/4

桶狀體D——桶腹直徑

d——桶底直徑

h——桶高V=πh(2D^2+d2^)/12(母線是圓弧形,圓心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15(母線是拋物線形)

高三數(shù)學(xué)公式篇三

無窮遞減等比數(shù)列

a,aq,aq^2……aq^n

其中,n趨近于正無窮,q1

留意:

(1)我們把|q|1無窮等比數(shù)列稱為無窮遞縮等比數(shù)列,它的前n項(xiàng)和的極限才存在,當(dāng)|q|≥1無窮等比數(shù)列它的前n項(xiàng)和的極限是不存在的。

(2)S是表示無窮等比數(shù)列的全部項(xiàng)的和,這種無限個(gè)項(xiàng)的和與有限個(gè)項(xiàng)的和從意義上來說是不一樣的,S是前n項(xiàng)和Sn當(dāng)n→∞的極限,即S=

S=a/(1-q)

高三數(shù)學(xué)公式篇四

1過兩點(diǎn)有且只有一條直線

2兩點(diǎn)之間線段最短

3同角或等角的補(bǔ)角相等

4同角或等角的余角相等

5過一點(diǎn)有且只有一條直線和已知直線垂直

6直線外一點(diǎn)與直線上各點(diǎn)連接的全部線段中,垂線段最短

7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8假如兩條直線都和第三條直線平行,這兩條直線也相互平行

9同位角相等,兩直線平行

10內(nèi)錯(cuò)角相等,兩直線平行

11同旁內(nèi)角互補(bǔ),兩直線平行

12兩直線平行,同位角相等

13兩直線平行,內(nèi)錯(cuò)角相等

14兩直線平行,同旁內(nèi)角互補(bǔ)

15定理三角形兩邊的和大于第三邊

16推論三角形兩邊的差小于第三邊

17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

18推論1直角三角形的兩個(gè)銳角互余

19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29角的平分線是到角的兩邊距離相等的全部點(diǎn)的集合

30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32等腰三角形的頂角平分線、底邊上的中線和底邊上的高相互重合

33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

34等腰三角形的判定定理假如一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35推論1三個(gè)角都相等的三角形是等邊三角形

36推論2有一個(gè)角等于60°的等腰三角形是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論