




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1.1
機(jī)學(xué)習(xí)概覽歡迎進(jìn)入《數(shù)據(jù)科學(xué)與機(jī)器學(xué)習(xí)》課程學(xué)習(xí)第4單元機(jī)器學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)DNN應(yīng)用-服裝服飾智能分揀DNN應(yīng)用-服裝服飾智能分揀簡(jiǎn)單DNN實(shí)現(xiàn)服裝服飾智能分揀02
Fashion-MNIST數(shù)據(jù)集簡(jiǎn)介01多層DNN實(shí)現(xiàn)服裝服飾智能分揀03多層DNN實(shí)現(xiàn)服裝服飾智能分類簡(jiǎn)單DNN,只有一個(gè)輸入層一個(gè)隱藏層和一個(gè)輸出層,雖然識(shí)別效率高,訓(xùn)練時(shí)間短,但準(zhǔn)確率比較低。在較復(fù)雜的識(shí)別環(huán)境中,通常是搭建多層神經(jīng)網(wǎng)絡(luò)識(shí)別模型進(jìn)行訓(xùn)練。
多層神經(jīng)網(wǎng)絡(luò)采用了2層以上的隱藏層,數(shù)量眾多的隱藏層極大提升了神經(jīng)網(wǎng)絡(luò)的運(yùn)算能力,當(dāng)然也增加了參數(shù)調(diào)試的難度。多層神經(jīng)網(wǎng)絡(luò)見(jiàn)下圖:圖1:訓(xùn)練效果變化圖多層DNN實(shí)現(xiàn)服裝服飾智能分類搭建多層神經(jīng)網(wǎng)絡(luò)模型實(shí)現(xiàn)服裝服飾整分揀,實(shí)現(xiàn)思路和任務(wù)實(shí)施和上一單元的簡(jiǎn)單DNN基本一致,重難點(diǎn)在于定義一個(gè)深度神經(jīng)網(wǎng)絡(luò)。#tf.keras.models.Sequential()model=keras.models.Sequential()#輸入數(shù)據(jù)拉直model.add(keras.layers.Flatten(input_shape=[28,28]))#for循環(huán)添加20層隱藏層for_inrange(20):model.add(keras.layers.Dense(100,activation="relu"))model.add(keras.layers.Dense(10,activation="softmax"))#sparse的原因:因?yàn)閥->index.pile(loss="sparse_categorical_crossentropy",optimizer='sgd',metrics=['accuracy'])#使用model.summary()查看模型model.summary()多層DNN實(shí)現(xiàn)服裝服飾智能分類使用model.summary()查看模型。結(jié)果如圖所示,是一個(gè)20層的神經(jīng)網(wǎng)絡(luò)。圖2:20層神經(jīng)網(wǎng)絡(luò)模型多層DNN實(shí)現(xiàn)服裝服飾智能分類繪制曲線圖。defshow_learning_curves(history):pd.DataFrame(history.history).plot(figsize=(8,5))plt.grid(True)plt.gca().set_ylim(0,3)plt.show()
show_learning_curves(history)model.evaluate(x_test_scaled,y_test)圖3:訓(xùn)練效果變化過(guò)程多層DNN實(shí)現(xiàn)服裝服飾智能分類使用model.evaluate(x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京視覺(jué)藝術(shù)職業(yè)學(xué)院《智能科學(xué)數(shù)學(xué)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 高考沖刺倒計(jì)時(shí)100天主題班會(huì)
- 湖北省鄂州市吳都中學(xué)2024-2025學(xué)年高考生物試題命題比賽模擬試卷(23)含解析
- 商丘學(xué)院《臨床寄生蟲(chóng)學(xué)與檢驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湘潭市岳塘區(qū)2024-2025學(xué)年數(shù)學(xué)五年級(jí)第二學(xué)期期末綜合測(cè)試試題含答案
- 上海應(yīng)用技術(shù)大學(xué)《虛擬儀器技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南大眾傳媒職業(yè)技術(shù)學(xué)院《工科數(shù)學(xué)分析(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇醫(yī)藥職業(yè)學(xué)院《中級(jí)法語(yǔ)I》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川中醫(yī)藥高等專科學(xué)?!夺t(yī)學(xué)數(shù)據(jù)挖掘課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東石油化工學(xué)院《智慧建造與物聯(lián)網(wǎng)》2023-2024學(xué)年第二學(xué)期期末試卷
- 紙箱廠質(zhì)量管理制度范本
- 人工智能對(duì)就業(yè)的影響
- 多重耐藥菌預(yù)防與控制標(biāo)準(zhǔn)操作規(guī)程
- 留學(xué)專業(yè)項(xiàng)目創(chuàng)業(yè)計(jì)劃書(shū)
- 中醫(yī)特色貼敷療法和處方
- 大班綜合《城市的夜晚》課件
- 居民自建樁安裝告知書(shū)回執(zhí)
- 路面驗(yàn)收標(biāo)準(zhǔn)
- 簡(jiǎn)易店鋪裝修合同范本(通用)
- 煙花爆竹行業(yè)特種作業(yè)人員安全管理培訓(xùn)
- PythonWeb開(kāi)發(fā)技術(shù)與應(yīng)用(Flask版)PPT完整全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論