2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)_第1頁
2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)_第2頁
2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)_第3頁
2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)_第4頁
2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023全新的高一數(shù)學(xué)知識(shí)難點(diǎn)總結(jié)2023高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1等差數(shù)列公式等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d或an=am+(n-m)d前n項(xiàng)和公式為:sn=na1+[n(n-1)/2]d或sn=(a1+an)n/2若m+n=2p則:am+an=2ap以上n均為正整數(shù)文字翻譯第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)_公差前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))_項(xiàng)數(shù)/2公差=后項(xiàng)-前項(xiàng)高中數(shù)學(xué)數(shù)列知識(shí)點(diǎn)總結(jié):等比數(shù)列公式等比數(shù)列求和公式等比數(shù)列:a(n+1)/an=q(n∈n)。通項(xiàng)公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);(3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))(4)性質(zhì):①若m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq;②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.③若m、n、q∈n,且m+n=2q,則am×an=aq^2(5)"g是a、b的等比中項(xiàng)""g^2=ab(g≠0)".(6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n等比數(shù)列求和公式推導(dǎo):sn=a1+a2+a3+...+an(公比為q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。2023高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。②過兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。2023高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3自變量x和因變量y有如下關(guān)系:y=kx+b則此時(shí)稱y是x的一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)二、一次函數(shù)的性質(zhì):1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。三、一次函數(shù)的圖像及性質(zhì):1.作法與圖形:通過如下3個(gè)步驟(1)列表;(2)描點(diǎn);(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。3.k,b與函數(shù)圖像所在象限:當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線必通過一、二象限;當(dāng)b=0時(shí),直線通過原點(diǎn)當(dāng)b<0時(shí),直線必通過三、四象限。特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。2023高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)41.集合的有關(guān)概念。1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件2)集合的表示方法:常用的有列舉法、描述法和圖文法3)集合的分類:有限集,無限集,空集。4)常用數(shù)集:n,z,q,r,n_2.子集、交集、并集、補(bǔ)集、空集、全集等概念。1)子集:若對(duì)x∈a都有x∈b,則ab(或ab);2)真子集:ab且存在x0∈b但x0a;記為ab(或,且)3)交集:a∩b={x|x∈a且x∈b}4)并集:a∪b={x|x∈a或x∈b}5)補(bǔ)集:cua={x|xa但x∈u}注意:①?a,若a≠?,則?a;②若,,則;③若且,則a=b(等集)3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號(hào),特別要注意以下的符號(hào):(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系①a∩b=aab;②a∪b=bab;③abcuacub;④a∩cub=空集cuab;⑤cua∪b=iab。5.交、并集運(yùn)算的性質(zhì)①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;6.有限子集的個(gè)數(shù):設(shè)集合a的元素個(gè)數(shù)是n,則a有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。2023高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)51、柱、錐、臺(tái)、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等表示:用各頂點(diǎn)字母,如五棱臺(tái)幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論