




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
EffectsofPublicSectorWages
onCorruption
WAGEINEQUALITYMATTERS
AsliDemirgü?-Kunt,MichaelLokshin,andVladimirKolchin
Abstract
Thepaperusesanewcountry-level,paneldatasettostudytheeffectofpublicsectorwagesoncorruption.Theresultsshowthatwageinequalityinthepublicsectorisanimportantdeterminantoftheeffectivenessofanti-corruptionpolicies.Increasingthewagesofpublicofficialscouldhelpreducecorruptionincountrieswithlowpublicsectorwageinequality.Incountrieswherepublicsectorwagesarehighlyunequal,however,raisingthewagesofgovernmentemployeescouldincreasecorruption.Theseresultsarerobusttoawiderangeofempiricalmodelspecifications,estimationmethods,anddistributionalassumptions.Combiningincreasesinpublicsectorwageswithpoliciesaffectingwagedistributioncouldhelppolicymakersdesigncost-effectiveprogramstoreducecorruptionintheircountries.
KEYWORDS
Corruption,
bureaucracy,
paneldataanalysis,
public-private
wagedifferential,
government
wagepolicy
JELCODES
J38,J45,O57,D73
WORKINGPAPER644?MAY2023
EffectsofPublicSectorWagesonCorruption:WageInequalityMatters
AsliDemirgü?-Kunt
CenterforGlobalDevelopment
MichaelLokshin
WorldBank
VladimirKolchin
WorldBank
Thispaper’sfindings,interpretations,andconclusionsareentirelythoseoftheauthorsanddonotnecessarilyrepresenttheviewsoftheWorldBank,itsExecutiveDirectors,orthecountriestheyrepresent.WethankToanDo,ZahidHasnain,StutiKhemali,MenahemPrywes,MartinRavallion,FrancescaRecanatini,RobyShenderowitsch,IvanTorre,andtheanonymousrefereefortheircomments.
AsliDemirgü?-Kunt,MichaelLokshin,andVladimirKolchin.2023.“EffectsofPublicSectorWagesonCorruption:WageInequalityMatters.”CGDWorkingPaper644.Washington,DC:CenterforGlobalDevelopment.
/publication/effects-public-sector-wages-corruption-wage-inequality-matters
CENTERFORGLOBALDEVELOPMENT
2055LStreet,NWFifthFloorWashington,DC20036
1AbbeyGardens
GreatCollegeStreet
London
SW1P3SE
CenterforGlobalDevelopment.2023.
TheCenterforGlobalDevelopmentworkstoreduceglobalpovertyandimprovelivesthroughinnovativeeconomicresearchthatdrivesbetterpolicyandpracticebytheworld’stopdecisionmakers.UseanddisseminationofthisWorkingPaperisencouraged;however,reproducedcopiesmaynotbeusedforcommercialpurposes.FurtherusageispermittedunderthetermsoftheCreativeCommonsLicense.
TheviewsexpressedinCGDWorkingPapersarethoseoftheauthorsandshouldnotbeattributedtotheboardofdirectors,fundersoftheCenterforGlobalDevelopment,ortheauthors’respectiveorganizations.
Contents
1.Introduction 1
2.Literaturereview 2
3.Dataandvariabledefinitions 4
3.1Maindependentvariables 4
3.2Othercontrolvariables 6
3.3Countryhistoricalandinstitutionalsetting 7
4.Empiricalspecification 8
5.Results 10
Explainingourresults 14
6.Sensitivityanalysis 15
7.Conclusions 17
References 18
Figuresandtables 23
Appendix 32
ListofFigures
1.Changesinthepublicsectorwagepremiumandcompressionratiofor
Argentina,Bolivia,andHungary,2000–2018 23
2.Effectofchangesinpublic-privatewagedifferentialoncorruption
fordifferentlevelsofwagecompressioninthepublicsector 24
3.Contourplotofpredictedlevelsofcorruptionasafunctionofpublic-private
wagedifferentialandwagecompressionratiointhepublicsector 25
ListofTables
1.Descriptivestatisticsfordependentandmainindependentvariables 26
2.FixedeffectestimationsofWGIcorruptionindex 27
3.Fixedeffectestimationsofthree(standardized)measuresofcorruption
andtwomeasuresofthepublic-privatewagedifferential 28
4.Estimationsofalternativemodelspecifications 29
5.Estimationsusingalternativeeconometrictechniques 30
6.Extremeboundsanalysisofcoefficientsonpublic-privatewagedifferential
andinteractiontermofwagecompressionratioandpublic–privatewage
differential 31
A1.Fixedeffectestimationsofthreemeasuresofcorruption
(original,unstandardizedindicators) 32
A2.Fixedeffectestimationofthemainspecificationofthreemeasuresofcorruption
andpublic-privatewagedifferentialfordifferentoccupations(comparedwithin
theformalsectoronly) 33
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:1
WAGEINEQUALITYMATTERS
1.Introduction
Anti-corruptionpoliciesinmanycountriesrelyonthenotionthatcorruptioniscausedbylowwagesinthepublicsector.Inattemptstocurtailcorruption,Argentina,Georgia,Ghana,Peru,Singapore,andothercountrieshaveimplementedpublicsectorreformstoincreasethewagesofgovernmentofficials.
Theevidenceontheeffectivenessofsuchinterventionsismixed.Somestudiesfindthathigherwagesinthepublicsectorwereassociatedwithlowercorruption(Klitgaad1997,VanRijckeghemandWeder2001,AnandKweon2017).Othersfindnosignificanteffect(Panizza2001,AdesandDiTella1997,Treisman20002007)orreverseeffect,withhighlevelsofcorruptionleadingtolowwagesinthepublicsector(Rose-AckermanandS?reide2012).
Differencesintheavailability,quality,andcomparabilityofdata,aswellasmethodologicalissuesrelatedtothepotentialeffectsofunobservablefactors,accountforthemixedresults(Treisman2007).Newlyavailablecross-countrydatafromtheWorldwideBureaucracyIndicatorsdatabaseallowustoaddressmanyoftheseproblemsandpresentnewevidenceontheeffectivenessofincreasingwagesasananti-corruptionmeasure.
Ourfindingssuggestthatthedistributionofwagesinthepublicsector(measuredasaratioofthe90thtothe10thwagepercentiles)couldbeanimportantdeterminantoftheeffectivenessofanti-corruptionpolicies.1Theheterogeneityintheimpactofhigherwagesoncorruptionwithrespecttowageinequalityinthepublicsectormaypartlyexplainwhysomeofthepreviousstudieshavefoundnosignificanteffectsofwagesoncorruption.Wefindthathigherwagesmayreducecorruptionincountrieswithrelativelycompressedwagesinthepublicsector.Incontrast,increasesinthewagesofpublicservantscanencouragecorruptionifpublicsectorwagesarehighlyunequal.Combiningtheincreasesinpublicsectorwageswithpoliciesaimedatreducingpublicsectorwageinequalitymightallowpolicymakerstodesigncost-effectiveprogramstolowercorruptionintheircountries.
Thelongitudinalstructureofourdataallowsustotacklearangeofeconometricissuesthatpreviousstudiescouldnotaddress.Wealsouseindicatorsobtainedfrommicro-levelsurveys.Mostcross-countrystudiesofcorruptionandwagesrelyonmacro-leveldatatoderivethepublic-privatewagepremium(e.g.,VanRijckeghemandWeder2001,AnandKweon2017,Treisman2000).Suchanapproachisassociatedwithpersistentmeasurementerrorsandfailstocontrolforage,gender,education,location,andotherindividualcharacteristicsinderivingthepublicwagepremium(Schiavo-Campoetal.1997,Leetal.2018).This“unadjusted”wagedifferentialcapturesthedifferencesbetweenthecharacteristicsofworkersbetweenthepublicandprivatesectorsandnotthedifferencesinreturnstothesecharacteristics.Ouranalysisreliesonan“adjustedpaypremium”
1Meyer-Sahlingetal.(2018)showthattheeffectofpaylevelsoncorruptionmaybecontextspecific,dependingonarangeofcharacteristicsofpaysystems,includingthepublicwagecompressionratio.Toourknowledge,ourpaperisthefirstempiricalworktoaddressthatissue.
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:2
WAGEINEQUALITYMATTERS
thatreflectsthewagedifferencesbetweencomparableworkersemployedinthetwosectors(Borjas2012).Ourresultsarerobusttoawiderangeofempiricalmodelspecifications,estimationmethods,anddistributionalassumptions.
Thefollowingsectionreviewstheliteratureontheeffectofpublicsectorwagesoncorruption.Section3describesthedataandmainvariables.Section4presentstheempiricalmodel.Section5presentsthemainresults.Section6addressestheendogeneityofthepublic-privatewagedifferential.Section7presentstherobustnesschecks,andSection8concludeswithpolicyimplications.
2.Literaturereview
Alargebodyofliteratureinvestigatestheeffectsofthecompensationofpublicsectoremployeesoncorruption.TheBeckerandStigler(1974)“shirkingmodel”predictsthatpublicofficialswillengageincorruptioniftheexpectedreturnsfromsuchactivitiesexceedtheirexpectedwageincomes.The“fairwage”hypothesisofAkerlofandYellen(1994)postulatesthatpublicofficialsengageincorruptionuntiltheirwagesrisetowhattheyperceiveasfairwages.Faircompensationofpublicemployeesmayleadsocietiestocondemncorruptionratherthanperceiveitasaninstilledculturalnorm(VanRijckeghemandWeder2001).Theempiricalevidenceontheeffectofpublicsectorwagesoncorruptionremainsinconclusive.
Theempiricalliteratureoncorruptionandwagesissparse,partlybecauseofthedifficultiesofcollectinggood-qualitydata(Gans-Morseetal.2018,OlkenandPande2012).Individualswhousepublicofficeforprivategainhavenoincentivestorevealinformationthatmaycompromisethem(e.g.,Ackerman2016).
FoltzandOpoku-Ageyemang(2015)investigatetheeffectofdoublingthesalariesofpoliceofficersonbribeextortionsfromtruckdriversinGhana.Theyfindthatthehikeinpolicesalaryincreasedtheamountandfrequencyofbribestruckdriverspaidtothepolice.Theauthorsconjecturethatthewagereformraisedthesocialstatusoftheofficersandchangedtheirreferenceofthe“fair”incomelevel,leadingtoupwardrevisionsoftheexpectedamountsofbribes.Mishraetal.(2008)lookattheeffectsofa1997payreforminIndiathatincreasedthewagesofcustomsofficials.Theyfindthereformhadnoimpactontariffevasion:officialskepttakingbribesatthesamerateafterreceivingpayincreases.Light(2014)arguesthatadrasticincreaseinthewagesofpoliceofficersaspartofthepolicesystem’sreformledtoareductionincorruptioninGeorgia.DiTellaandSchargrodsky(2003)studythenexusbetweenwagepremiumsandcorruptioninArgentina.Theyfindthatfrequentauditsreducecorruption.However,thehigherwagespaidtoprocurementofficersfailtoreducecorruptionwhentheprobabilityofdetectioniseitherloworveryhigh;largerwagepremiumscombinedwithintermediateauditinglevelsreducecorruption.
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:3
WAGEINEQUALITYMATTERS
Theevidenceontheimpactofpublicsectorwagecutsoncorruptionismoreconclusive.Borcanetal.(2014)investigatetheeffectofanunanticipated25percentwagereductioninpublicschoolsonthepassingratesofstandardizedexamsinRomania.Theyreportthatthepercentageofstudentswhopassedtheexamsinpublicschoolscomparedtoprivateschoolsincreased.Theauthorsattributethatdifferencetoincreasedcorruptionamongpublicschoolteachers.GorodnichenkoandPeter(2007)findthatpublicsectoremployeesinUkrainewhoareunderpaidrelativetotheircounterpartsintheprivatesectormaycompensateforthatdifferencebytakingbribes.Theynotethatthewagegapbetweenthepublicandprivatesectorswidensatthetopofthewagedistribution,suggestingthatdecompressingpublicsectorwagesmightcurbcorruption—similartowhatwefindinthispaper.
Whileprovidingvaluablecountry-levelevidence,single-countrystudiesofcorruptionmaysufferfromtheproblemofexternalvalidity.Theissuesofcorruptionaresomultidimensional,andtheeffectivenessofdifferentmeasurestofightcorruptiondependsonsomanyfactors(includinglegal,institutional,andculturalfactors,whichareoftenunobservabletoresearchers)thatitmaybedifficulttogeneralizetheexperienceofonecountrytoothers.
Severalstudiesanalyzetherelationshipbetweencorruptionandpublic-privatewagedifferentialsinacross-countrysetting.GoelandRich(1989)documentthattheincidenceofbriberyconvictionsofcivilservantsisinverselyrelatedtothepublic-privatewagepremiumacrossstatesintheUS.VanRijckeghemandWeder(2000)findanegativecorrelationbetweenthewagepremiumofpublicsectoremployeesandcorruptionindevelopingandlower-incomecountries.Theyestimatethatpayingpublicemployeestwicetheaverageprivate-sectorwageisassociatedwithadecreaseof0.5pointsonacorruptionmeasurethatrangesfrom0to6.
StudyingcountriesinLatinAmericaandtheCaribbean,Panizza(2001)findsnocorrelationbetweencorruptionandthepublic-privatewagedifferential.However,hereportsasignificantpositivecorrelationbetweencorruptionandthepublic-privatewagedifferentialforformalsectorworkerswithloweducation.Leetal.(2013)discoveranegativerelationshipbetweengovernmentwagesandcorruptioninalargesetofcountries.Theyfindthattheimpactofwagesoncorruptionisstrongerinlow-incomecountries.AnandKweon(2017)analyzeapanelof43countriesbetween1999and2008.Theyfindthatthepublicsectorwagepremiumhasamodesteffectonreducingcorruption.Theaveragenon–OECDcountrywouldneedtoincreasepublicsectorcompensationbyafactorof10toreduceitscorruptiontothelevelsoftheOECDcountries,accordingtotheirstudy.
Severalmacro-levelstudiesarguethatwagepremiumshaveverylimitedornoimpactoncurbingcorruption(AltandLassen2014,Dahlstr?metal.2012,RauchandEvans2000,Treisman2000).Dahlstr?metal.(2012)suggestthatcorruptionisaffectedbythemeritocraticrecruitmentofpublicworkersratherthanbytheirremunerationlevels.Treisman(2000)reportsaninsignificantcorrelationbetweenwagesandcorruptionindifferentspecificationsbasedonasmallsampleofcountries.
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:4
WAGEINEQUALITYMATTERS
AnandKweon(2017)istheonlystudyknowntousthataddressesomittedvariablebiasbyapplyingcountryfixedeffect(FE)estimation.Allotherstudiescitedaboverelyonestimationsthatexploitcross-countryvariationandthereforehaveagreaterriskofintroducingomittedvariablebias.Inaddition,allthecross-countrystudiesmentionedabove,exceptLeetal.(2013)andPanizza(2011),usemacro-leveldatatoimputetheaveragewagesofpublicandprivatesectorworkers.AsweargueintheIntroduction,wagedifferentialsestimatedfrommicro-levelsurveydataholdseveraladvantagesoverdifferentialsconstructedfrommacrostatistics.
3.Dataandvariabledefinitions
3.1Maindependentvariables
Weusethreemeasuresofcorruption.TheControlofCorruptionIndicatorcomesfromtheWorldwideGovernanceIndicators(WGI)databaseproducedbytheWorldBankannuallysince1996forover200countries(Kaufmannetal.2010).Theindicatorreflectsperceptionsofbothpettyandgrandformsofcorruptionandthe“capture”ofthestatebyelitesandprivateinterests.WerefertothismeasureasCorruption_WGI.
Since2007,theWorldEconomicForum(WEF)hasproducedtheEthicsandCorruptionIndicatorforover140countries(WorldEconomicForum2018).Itreflectsrespondents’perceptionsofwhethergovernmentspreventtheillegaldiversionofpublicfundsandhowfrequentlyinvestorsandcompaniesmakeunofficialpayments.WerefertothismeasureasCorruption_WEF.
TheCorruptionPerceptionIndex(CPI)comesfromTransparencyInternational(2020).Itisacompositeindexofcorruptioninthepublicsectorasperceivedbyexpertsandbusinesspeople.TIhasbeenproducingtheCPIannuallysince1996forover180countries.Achangeinthemethodologyin2012constrainsthetimeseriestotheperiodfrom2012to2018.WerefertothismeasureasCorruption_TI.2Westandardizeallcorruptionindicatorstobeofmean0andstandarddeviation1.Tosimplifytheinterpretationandcomparisonofourresults,weinvertthescaleforWGIandWEFcorruptionindicatorssothatlargervaluesofstandardizedindicatorscorrespondtomorecorruption.Weshowthatthemainresultsofourpaperusingtheoriginal,unstandardized,valuesofthe
2Weconsideredusingthreeotherindicatorsofcorruption:theAbsenceofCorruptioncomponentoftheWorldJusticeProject’s(WJP)RuleofLawIndex(WorldJusticeProject2020),theAnti-CorruptionPolicycomponentof
theBertelsmannTransformationIndex(BTI)(BertelsmannStiftung2020),andtheCorruptioncomponentoftheInternationalCountryRiskGuide(ICRG)(PRSGroup2020).Thefirsttwoindicatorssignificantlyreducethenumberofcountriesinthesample.TheWJPdataarenotcomparablebefore2015,whichresultsinfewerthan80observationsfor17countries.TheBTIincludesonlydevelopingcountriesandtransitioneconomies,limitingthenumberofcountriesinouranalysisto19.WedecidednottousetheICRGindicatorfollowingKnack(2007)andTreisman(2007),whoadviseagainstusingthiscross-countrycorruptionindicatorforlongitudinalanalysis.
WAGEINEQUALITYMATTERS
corruptionindicatorsarequalitativelysimilartotheresultsbasedonthestandardizeddependentvariables(Table2AintheAppendix).3
Table1summarizesthestatisticsforthemainvariablesusedinouranalysis.TheWGIcorruptionindexranksParaguayandtheRussianFederationasthemostcorruptcountriesinoursampleandFinlandastheleastcorrupt.FinlandalsohasthelowestscoreontheTIcorruptionindex,onwhichHondurasandGreecerankasthemostcorrupt.4
MostofourcontrolvariablescomefromtheWorldwideBureaucracyIndicators(WWBI)dataset(WorldBank2020b).Themainfeatureofthesedataisthatitderivescountry-levelindicatorsfrommicro-levellaborforcesurveys.Differencesbetweenthepublicandprivatesectorwagesderivedfrommacrodataignorethedifferencesinworkers’humancapitalcharacteristicsthatleadtopotentialbiaseswhencomparedwithdifferencesobtainedfromthemicro-levelsurveys(Leetal.2018).5Anydistributionalstatistics,suchaswagecompressionratios,cannotbederivedfrommacro-leveldataatall.
TheWWBIdatasetisapanelof132countriescoveringtheperiod2000–19.Forty-fourcountriesinthedatasethaveatleast4panelobservations,41countrieshaveatleast6,36haveatleast8,and33haveatleast10.Thesamplehas454or507country-yearobservationsdependingonthemeasureofthepublic-privatewagedifferentialweuse.
Thepublicsectorwagepremiumisestimatedasacoefficientonthepublicsectoremploymentdummyinthestandardlog-earningsregressionsforeachcountry(Mincer1974).6Thesamplesizesfortheseestimationsrangefrom6,799observationsforRussiato1.8millionforBrazil.TheWWBIdatasetcontainstwostandardmeasuresofthepublicsectorwagepremium(WPi,t).Thefirstisestimatedonasampleofpublicsectorworkersandtheircounterpartsintheformalprivatesector.
3Severalstudies(e.g.,Knack2007)questionthevalidityofusingtheWGIandTIcorruptionindicatorsforlongitudinalanalysis.Changesindatasourcesandinthemethodologyofconstructingindicatorsareamongthemainissuesaffectingtheresultsoflongitudinalestimates.WeareawareofthesecritiquesandaddresstheminSection6byreplicatingourresultsonpanelsofdifferentlengthsandusinglaggedindependentvariables.Additionally,theWGIindicatorisconstructedbasedonabroadersetofdatasources.Knack(2007),Rohwer(2009),andChabova(2017)discussdifferencesandmethodologicalissuesrelatedtotheconstructionofthecorruptionindicators.Inlightofthesestudies,theWGIindicatoristhemostreliableinassessingthelevelsofcorruptioninacountry.
4RussiaandParaguayarenotincludedintheTIsamplebecausebothcountrieshavefewerthanfivelongitudinalobservationsbetween2012and2018.
5Forexample,ifthepublicsectorworkersaremoreexperiencedandeducatedcomparedwiththeircounterpartsintheprivatesector,themacro-levelanalysiswouldoverestimatethepublicwagepremium.Thisproblemislargelyalleviatedwhendifferencesarederivedfrommicrolevelsurveysthatcancontrolforworkers’characteristics.
6Thepublicsectorincludesthecentralgovernment,nongovernmentalorganizations,thearmedforces,andstate-ownedcompanies.Theprivatesectoristhepartoftheeconomythatisbothrunforprivateprofitandnotcontrolledbythestate(WorldBank2020b).Thepublic–privatewagedifferentialisestimatedonthesampleofemployeesineachcountry.Formally,theempiricalspecificationforthisestimationisln(wagei)=a+bPublici+冗Xi+ci,where
Publiciequals1ifapersonisemployedinthepublicsectorandXiisthesetofcontrols,whichincludeage,agesquared,gender,education,andlocationofaworker.Toderivethepublic-privatewagedifferential,theestimatedcoefficientβisdeloggedandreducedby1sothatthewagedifferential=(exp()?1).Theresultingwagedifferentialsarenegativeifpublicsectorwagesarelowerthantheprivatesectorwagesandpositiveotherwise(Gindlingetal.2020).
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:5
EFFECTSOFPUBLICSECTORWAGESONCORRUPTION:6
WAGEINEQUALITYMATTERS
Thesecondisestimatedonasampleofemployeesofboththeformalandinformalpartsoftheprivatesector.Ourbaselinespecificationusesthewagedifferentialbetweenthepublicandformalprivatesectorworkers,aspublicemployeesaremorelikelytocomparetheirwageswithwagesintheformalprivatesector(GoelandRich1989).
TheWWBIdatasetalsoincludestwopublicsectorwagepremiumindicatorsderivedfordifferentoccupations.Thefirstcomparesthewagesofseniorpublicofficialsinthepublicsectorwithemployeesinrelatedoccupationsintheformalprivatesector.Thesecondcomparesthewagesofallprofessionalswithemployeesincorrespondingoccupationsintheformalprivatesector.Weusetheseindicatorstovalidateourmainresults.
Inoursample,onaverage,publicsectorworkersearn5.6percentmorethantheircomparatorsintheformalprivatesector.Thepublicsectorpremiumincreasesto15.1percentwheninformalsectoremployeesareaccountedfor,amagnitudesimilartothatofGindlingetal.(2020).Usingtheformalprivatesectorforcomparison,Peru(?34.2percent)andtheDominicanRepublic(?30.1percent)havethelowestdifferentials,andEcuador(50.9percent)andCyprus(48.2percent)havethelargest.Whenallworkersintheprivatesector(formalandinformal)areusedforcomparison,Russia(?29.0percent)andtheDominicanRepublic(?16.4percent)havethelowestpublic-privatewagedifferentials,andCostaRica(74.0percent)andPakistan(69.2percent)havethelargest.
Ourmeasureofwagedispersion—thewagecompressionratio(WCi,t)—isdefinedasaratioofthe90thtothe10thpercentilesofpublicsectoremployees’weeklywages(e.g.,Heyman2008,Almeida-SantosandMumford2005,Brunello2001)7.TheSlovakRepublic(2.4)andCroatia(2.6)havethelowestwagecompressionratiosinoursample.ThepublicsectorwagedistributionismostunequalintheRussianFederation(10.3)andBrazil(9.5).8
3.2Othercontrolvariables
Weuseseveralcontrolvariablesinourestimations.TheshareofpublicworkerswithtertiaryeducationcomesfromtheWWBIdataset.ThesmallestshareisinUruguay(28.3percent),andthelargestsharesareinLithuania(83.9percent)andIreland(78.0percent).
TheInternationalCountryRiskGuide(ICRG)datasetprovidestheindexofthequalityofthebureaucracy(PRSGroup2020).Itgaugeshowwellbureaucraticinstitutionscandeliverpublicservicesunderpoliticalpressure,especiallywhengovernmentschange.Theconjectureisthatastrongprofessionalbureaucraticbodycancounterattemptsbynewlyelectedpoliticianstoseekeconomicrents.Dahlstr?metal.(2012)showthevitalroleprofessionalbureaucratsmayplayin
7Onecanuse
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園播報課件
- 單位瓷磚采購合同標(biāo)準(zhǔn)文本
- 兄弟合作協(xié)議合同標(biāo)準(zhǔn)文本
- 制作商城合同范例
- 2025年城鎮(zhèn)燃?xì)夤艿栏脑旃こ蘌PP項目合同
- 買房合同標(biāo)準(zhǔn)文本正規(guī)
- 公司進(jìn)貨和銷售合同范例
- 中介代理協(xié)議合同標(biāo)準(zhǔn)文本
- 02勞務(wù)合同標(biāo)準(zhǔn)文本
- 高頻電路的拓展知識
- 《社區(qū)康復(fù)》課件-第二章 社區(qū)康復(fù)的內(nèi)容
- 2023年河南省安陽市殷都區(qū)九年級中考模擬預(yù)測數(shù)學(xué)模擬預(yù)測題
- 兒科護(hù)理論文選題
- 科普白蟻防治知識培訓(xùn)課件
- 輕比重單側(cè)腰麻在下肢手術(shù)中的應(yīng)用
- 車輛安全駕駛技能培訓(xùn)
- 2016-2023年江蘇護(hù)理職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年考點試題甄選合集含答案解析
- 《大數(shù)據(jù)技術(shù)在財務(wù)中的應(yīng)用》 課件全套 項目1-7 Python概述-Python在財務(wù)中的應(yīng)用案例
- 《海關(guān)審價介紹》課件
- 《立體主義》課件
- 2023年安慶市迎江區(qū)社區(qū)工作者招聘考試真題
評論
0/150
提交評論