版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省泰州市靖江外國(guó)語校2022年中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.我國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.2.估計(jì)﹣2的值應(yīng)該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間3.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點(diǎn),將△ABC沿DE折疊,使點(diǎn)B落在AC邊上點(diǎn)F處,并且DF∥BC,若CF=3,BC=9,則AB的長(zhǎng)是()A. B.15 C. D.94.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長(zhǎng)為()A.1 B.2 C.3 D.45.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1256.不等式組的解集在數(shù)軸上表示為()A. B. C. D.7.已知二次函數(shù)(為常數(shù)),當(dāng)時(shí),函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或38.如圖,已知反比函數(shù)的圖象過Rt△ABO斜邊OB的中點(diǎn)D,與直角邊AB相交于C,連結(jié)AD、OC,若△ABO的周長(zhǎng)為,AD=2,則△ACO的面積為()A. B.1 C.2 D.49.如圖直線y=mx與雙曲線y=交于點(diǎn)A、B,過A作AM⊥x軸于M點(diǎn),連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.410.如圖,在平面直角坐標(biāo)系中,位于第二象限,點(diǎn)的坐標(biāo)是,先把向右平移3個(gè)單位長(zhǎng)度得到,再把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)是________.12.如圖,在兩個(gè)同心圓中,三條直徑把大、小圓都分成相等的六個(gè)部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.13.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為_____.14.如圖,四邊形ABCD中,點(diǎn)P是對(duì)角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),AD=BC,∠PEF=35°,則∠PFE的度數(shù)是_____.15.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是___.16.計(jì)算(﹣a2b)3=__.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達(dá)式;在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.18.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長(zhǎng)度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(zhǎng)(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時(shí),求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,△PCD是等腰三角形時(shí)所有的t值.19.(8分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).20.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣12x+3的圖象與反比例函數(shù)y=kx(x>0,k是常數(shù))的圖象交于A(a,2),B(4,b)兩點(diǎn).求反比例函數(shù)的表達(dá)式;點(diǎn)C是第一象限內(nèi)一點(diǎn),連接AC,BC,使AC∥x軸,BC∥y軸,連接OA,OB.若點(diǎn)P在y軸上,且△OPA的面積與四邊形OACB的面積相等,求點(diǎn)21.(8分)如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,直線y=kx+b交BC于點(diǎn)E(1,m),交AB于點(diǎn)F(4,),反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)E,F(xiàn).(1)求反比例函數(shù)及一次函數(shù)解析式;(2)點(diǎn)P是線段EF上一點(diǎn),連接PO、PA,若△POA的面積等于△EBF的面積,求點(diǎn)P的坐標(biāo).22.(10分)經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,現(xiàn)有兩輛汽車經(jīng)過這個(gè)十字路口.(1)試用樹形圖或列表法中的一種列舉出這兩輛汽車行駛方向所有可能的結(jié)果;并計(jì)算兩輛汽車都不直行的概率.(2)求至少有一輛汽車向左轉(zhuǎn)的概率.23.(12分)把0,1,2三個(gè)數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機(jī)抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請(qǐng)用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.24.計(jì)算:(π﹣3.14)0﹣2﹣|﹣3|.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.2、A【解析】
直接利用已知無理數(shù)得出的取值范圍,進(jìn)而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點(diǎn)睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關(guān)鍵.3、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據(jù)CE+EB=9,得到CE+EF=9,設(shè)EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EF與CE的長(zhǎng),由FD與BC平行,得到一對(duì)內(nèi)錯(cuò)角相等,等量代換得到一對(duì)同位角相等,進(jìn)而確定出EF與AB平行,由平行得比例,即可求出AB的長(zhǎng).【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設(shè)EF=EB=x,得到CE=BC-EB=9-x,根據(jù)勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點(diǎn)睛】此題考查了翻折變換(折疊問題),涉及的知識(shí)有:勾股定理,平行線的判定與性質(zhì),平行線分線段成比例,熟練掌握折疊的性質(zhì)是解本題的關(guān)鍵.4、A【解析】試題分析:由角平分線和線段垂直平分線的性質(zhì)可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點(diǎn):線段垂直平分線的性質(zhì)5、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點(diǎn)睛】本題考查角平分線的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線),直角三角形的判定(有一個(gè)角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.6、A【解析】
根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【詳解】∵x≥﹣2,故以﹣2為實(shí)心端點(diǎn)向右畫,x<1,故以1為空心端點(diǎn)向左畫.故選A.【點(diǎn)睛】本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實(shí)心圓點(diǎn)表示;“<”、“>”要用空心圓點(diǎn)表示.7、A【解析】
由解析式可知該函數(shù)在x=h時(shí)取得最小值1,x>h時(shí),y隨x的增大而增大;當(dāng)x<h時(shí),y隨x的增大而減小;根據(jù)1≤x≤3時(shí),函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時(shí),y取得最小值5;②若h>3,可得當(dāng)x=3時(shí),y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時(shí),y隨x的增大而增大,當(dāng)x<h時(shí),y隨x的增大而減小,∴①若h<1,當(dāng)時(shí),y隨x的增大而增大,∴當(dāng)x=1時(shí),y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當(dāng)時(shí),y隨x的增大而減小,當(dāng)x=3時(shí),y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時(shí),當(dāng)x=h時(shí),y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進(jìn)行分類討論是解題的關(guān)鍵.8、A【解析】
在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長(zhǎng),根據(jù)周長(zhǎng)求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長(zhǎng),過D作DE垂直于x軸,得到E為OA中點(diǎn),求出OE的長(zhǎng),在直角三角形DOE中,利用勾股定理求出DE的長(zhǎng),利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長(zhǎng)為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點(diǎn)E,可得E為AO中點(diǎn),∴OE=OA=(-)(假設(shè)OA=+,與OA=-,求出結(jié)果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點(diǎn)睛】本題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵.9、B【解析】
此題可根據(jù)反比例函數(shù)圖象的對(duì)稱性得到A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對(duì)稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€(gè)知識(shí)點(diǎn).10、D【解析】
根據(jù)要求畫出圖形,即可解決問題.【詳解】解:根據(jù)題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點(diǎn)睛】本題考查平移變換,旋轉(zhuǎn)變換等知識(shí),解題的關(guān)鍵是正確畫出圖象,屬于中考??碱}型.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】
求出自變量x為1時(shí)的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo).【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)為,故答案為.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,在y軸上的點(diǎn)的橫坐標(biāo)為1.12、【解析】
根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.【點(diǎn)睛】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計(jì)算陰影區(qū)域的面積在總面積中占的比例,這個(gè)比例即事件(A)發(fā)生的概率.13、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).14、35°【解析】∵四邊形ABCD中,點(diǎn)P是對(duì)角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.15、12【解析】
根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,而從C向A運(yùn)動(dòng)時(shí),BP先變小后變大,從而可求出線段長(zhǎng)度解答.【詳解】根據(jù)題意觀察圖象可得BC=5,點(diǎn)P在AC上運(yùn)動(dòng)時(shí),BPAC時(shí),BP有最小值,觀察圖象可得,BP的最小值為4,即BPAC時(shí)BP=4,又勾股定理求得CP=3,因點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A,根據(jù)函數(shù)的對(duì)稱性可得CP=AP=3,所以的面積是=12.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,解題的關(guān)鍵是注意結(jié)合圖象求出線段的長(zhǎng)度,本題屬于中等題型.16、?a6b3【解析】
根據(jù)積的乘方和冪的乘方法則計(jì)算即可.【詳解】原式=(﹣a2b)3=?a6b3,故答案為?a6b3.【點(diǎn)睛】本題考查了積的乘方和冪的乘方,關(guān)鍵是掌握運(yùn)算法則.三、解答題(共8題,共72分)17、(1);(2)P(,0);(3)E(,﹣1),在.【解析】
(1)將點(diǎn)A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達(dá)式;(2)先由射影定理求出BC=3,那么B(,﹣3),計(jì)算求出S△AOB=××4=.則S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點(diǎn)坐標(biāo)為(﹣,﹣1),即可求解.【詳解】(1)∵點(diǎn)A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達(dá)式為;(2)∵A(,1),AB⊥x軸于點(diǎn)C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設(shè)點(diǎn)P的坐標(biāo)為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負(fù)半軸上的點(diǎn),∴m=﹣,∴點(diǎn)P的坐標(biāo)為(,0);(3)點(diǎn)E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點(diǎn)E在該反比例函數(shù)的圖象上.考點(diǎn):待定系數(shù)法求反比例函數(shù)解析式;反比例函數(shù)系數(shù)k的幾何意義;坐標(biāo)與圖形變化-旋轉(zhuǎn).18、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】
(1)根據(jù)題意點(diǎn)R與點(diǎn)B重合時(shí)t+t=3,即可求出t的值;(2)根據(jù)題意運(yùn)用t表示出PQ即可;(3)當(dāng)點(diǎn)R落在□ABCD的外部時(shí)可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),AP=t,PQ=PQ=AP?tanA=t.∵點(diǎn)R與點(diǎn)B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點(diǎn)P在BC邊上時(shí),3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時(shí),重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時(shí),重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時(shí),重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時(shí),易知AP1=3,t=3.②當(dāng)DC=DP2時(shí),CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時(shí),t=4.④當(dāng)CP3=DP3時(shí),CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點(diǎn)睛】本題考查四邊形綜合題、動(dòng)點(diǎn)問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.19、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】
(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.
(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;
(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.20、(1)反比例函數(shù)的表達(dá)式為y=4x(x>0);(2)點(diǎn)P【解析】
(1)根據(jù)點(diǎn)A(a,2),B(4,b)在一次函數(shù)y=﹣12x+3的圖象上求出a、b的值,得出A、B(2)延長(zhǎng)CA交y軸于點(diǎn)E,延長(zhǎng)CB交x軸于點(diǎn)F,構(gòu)建矩形OECF,根據(jù)S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF,設(shè)點(diǎn)P(0,m),根據(jù)反比例函數(shù)的幾何意義解答即可.【詳解】(1)∵點(diǎn)A(a,2),B(4,b)在一次函數(shù)y=﹣12x∴﹣12a+3=2,b=﹣1∴a=2,b=1,∴點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)B的坐標(biāo)為(4,1),又∵點(diǎn)A(2,2)在反比例函數(shù)y=kx∴k=2×2=4,∴反比例函數(shù)的表達(dá)式為y=4x(x(2)延長(zhǎng)CA交y軸于點(diǎn)E,延長(zhǎng)CB交x軸于點(diǎn)F,∵AC∥x軸,BC∥y軸,則有CE⊥y軸,CF⊥x軸,點(diǎn)C的坐標(biāo)為(4,2)∴四邊形OECF為矩形,且CE=4,CF=2,∴S四邊形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣12×2×2﹣1=4,設(shè)點(diǎn)P的坐標(biāo)為(0,m),則S△OAP=12×2?|m∴m=±4,∴點(diǎn)P的坐標(biāo)為(0,4)或(0,﹣4).【點(diǎn)睛】此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,涉及的知識(shí)有:坐標(biāo)與圖形性質(zhì),直線與坐標(biāo)軸的交點(diǎn),待定系數(shù)法求函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.21、(1);;(2)點(diǎn)P坐標(biāo)為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行卡POS機(jī)安全使用
- 侵權(quán)責(zé)任打架私了協(xié)議書
- 廣告行業(yè)訴訟策略
- 北京演藝中心租賃合同
- 臨時(shí)看護(hù)保姆聘用合同模板
- 環(huán)保節(jié)能二手房定金協(xié)議模板
- 生態(tài)修復(fù)溫室大棚施工合同
- 橋梁建設(shè)壓路機(jī)施工合同
- 商業(yè)區(qū)道路瀝青鋪設(shè)工程合同
- 古建筑修復(fù)施工圍墻合同
- 汽車常用英文術(shù)語
- 六年級(jí)家長(zhǎng)會(huì)家長(zhǎng)代表演講稿-PPT
- 學(xué)校校報(bào)??硎渍Z(創(chuàng)刊詞)
- 《電容的連接》ppt課件
- 采集運(yùn)維專業(yè)問答題(修訂)20140627
- 畢業(yè)生就業(yè)推薦表填寫說明-北京化工大學(xué)理學(xué)院.doc
- 一例重癥肺炎的個(gè)案護(hù)理.doc
- 總分類賬戶與明細(xì)分類賬戶的平行登記教學(xué)設(shè)計(jì)
- 玻璃幕墻計(jì)算書
- 《醫(yī)院重點(diǎn)病種分析》.doc
- 鍍鋅鋼管螺紋連接施工方案
評(píng)論
0/150
提交評(píng)論