版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
PAGE14 -PAGE1-題目:海藻酸鈉/SiO2涂膜對采后茭白褐變的影響外文翻譯之一Antioxidantactivityandphenoliccontentofselectedfruitseeds作者:Yean-YeanSoong,PhilipJ.Barlow國籍:Singapore出處:FoodChemistry88(2004)411–417AbstractThetotalantioxidantcapacityandphenoliccontentofedibleportionsandseedsofavocado,jackfruit,longan,mangoandtamarindwerestudied.Inaddition,therelationshipbetweenantioxidantactivity,phenoliccontentandthedifferentdegreesofheatingofmangoseedkernelwasinvestigated.Theseedsshowedamuchhigherantioxidantactivityandphenoliccontentthantheedibleportions.Thecontributionofallthefruitseedfractionstothetotalantioxidantactivityandphenoliccontentwasalways>70%.ABTScationradical-scavengingandFRAPassayswereemployedforthedeterminationofantioxidantactivity;FCRassaywasusedtomeasurethetotalphenoliccontent.TheAEACandFRAPofethanolicextractsofMSKPproductsincreasedtoamaximumafterheatingto160℃.ThetotalphenoliccontentinextractsofMSKPproductsincreasedfrom50.3to160mg/gGAEwithanincreaseinheatingtemperatureto160℃.Keywords:Antioxidantcapacity;Avocado;Jackfruit;Longan;Mango;Phenoliccontent;TamarindIntroductionEpidemiologicalstudiesshowthatmanyphytonutrientsoffruitsandvegetablesmaybebeneficialinprotectingthehumanbodyagainstdamagebyreactiveoxygenandnitrogenspecies(Diplocketal.,1998;Halliwell,1997).Thus,itisconsideredimportanttoincreasetheantioxidantintakeinthehumandietandonewayofachievingthisisbyenrichingfoodwithantioxidants.Assomesyntheticantioxidantsmayexhibittoxicityandrequirehighmanufacturingcostsbutshowlowerefficiencythannaturalantioxidants,thereisaneedtoidentifynaturalandpossiblymoreeconomicandeffectiveantioxidantswithpotentialtobeincorporatedintofoods.Severalnaturalantioxidantshavealreadybeenisolatedfromdifferentkindsofplantmaterials,suchasoilseeds,cerealcrops,vegetables,fruits,leaves,roots,spices,andherbs(Ramarathnam,Osawa,Ochi,&Kawakishi,1995).Antioxidantcompoundshavebeenidentifiedintheseedsofcitrus(Alessandra,Marie-Elisabeth,Hubert,&Claudette,1998),grape(Jayaprakasha,Singh,&Sakariah,2001),mango(Puravankara,Boghra,&Sharma,2000),canola(Krygier,Sosulski,&Hogge,1982;Naczk,Amarovicz,Sullivan,&Shahidi,1998;Wanasundara,Amarovicz,&Shahidi,1994),sunflower(Kubicka,Jedrychowski,&Amarowicz,1999),primrose(Balasinska&Troszynska,1998;Wettasinghe&Shahidi,1999),sesame(Shahidi,Amarovicz,Abou-Gharbia,&Shehata,1997),flaxseeds(Oomah,Kenaschuk,&Mazza,1995)andlupin(Tsaliki,Lagouri,&Doxastakis,1999);yet,studiesrelatingtotheantioxidantactivityoftropicalandsubtropicalfruitseedshavebeensparselyreported.Fruitseedshavenotgenerallyreceivedmuchattentionasantioxidantsourcesandthiscouldbeduetotheirlackofpopularityandlackofcommercialapplications(unlikeoilseeds).However,thereareconsiderablyhigherratiosofby-productsarisingfromfruit-processingplantsasfruitjuicesandderivedproductshaveexperiencedgrowingworldwidepopularity.Forexample,thereareabout3*10^5tonofdrymangoseedkernelsavailableannuallyinIndiaafterconsumptionorindustrialprocessingofmangofruits(NarasimhaChar,Reddy,&ThirumalaRoa,1977;NarasimhaChar&Azeemoddin,1989).Itwouldbebeneficial,inimprovingthecompleteutilizationoftheseeds,iftheycouldbeusedasasourceofnaturalfoodadditivesandingredients.Plantshaveexcellentantioxidantpropertiesandtheseeffectsaremainlyattributedtotheirphenolicconstituents.Thephenolicconstituentsofmangoseedkernelarereportedtobemainlygallicandellagicacids,aswellasgallates(Puravankaraetal.,2000).Gallotanninsandcondensedtannin-relatedpolyphenolsarealsoreportedtobepresent(Arogba,2000).Aphytochemicalinvestigationofmangostembarkextracthasledtotheisolationofgallicacid,3,4-dihydroxybenzoicacid,gallicacidmethylester,gallicacidpropylester,mangiferin,(+)-catechin,(—)-epicatechin,andbenzoicacidandbenzoicacidpropylester(Albertoetal.,2002).Antioxidativeactivityoftamarindseedcoatisduetothepresenceof2-hydroxy-30,40-dihydroxyacetophenone,methyl3,4-dihydroxybenzoate,3,4-dihydroxyphenylacetateandepicatechin(Tsudaetal.,1994).Avocadoseedsareclaimedtoberichinacomplexmixtureofpolyphenoliccompounds,rangingfrom(+)-catechinand(—)-epicatechintohighlypolymericsubstances;aproanthocyanidinhasalsobeenidentified(Geissman&Dittmar,1965).Theobjectivesofthepresentstudyweretodeterminethetotalantioxidantcapacitiesandphenoliccontentsofavocado,jackfruit,longan,mangoandtamarindseeds,tocomparetheantioxidativecapacitywiththeiredibleportions,andtoinvestigatetherelationshipsbetweenantioxidantactivity,phenoliccontentandtheeffectsofdifferentdegreesofheatingofmangoseedkernel.2.Materialsandmethods2.1.Materials2.1.1.FruitsAvocado(PerseaAmericanaMill.),jackfruit(ArtocarpusheterophyllusLam.),longan(DimocarpuslonganLour.),mango(MangiferaindicaL.),andtamarind(TamarindusindicaL.)werepurchasedonseveralseparateoccasionsfromlocalmarketsinSingapore.2.1.2.ChemicalsABTS,L-Ascorbicacid,potassiumpersulfatewerepurchasedfromSigma(MO,USA).Folin–Ciocalteureagent,iron(III)chloridehexahydrate,anhydroussodiumacetate,aceticacid,ethanolandhydrochloricacidwerepurchasedfromMerck(Darmstadt,Germany).TPTZ,iron(II)sulfateheptahydrateandgallicacidwerepurchasedfromAcrosOrganics(NJ,USA).AnhydroussodiumcarbonatewaspurchasedfromJ.T.Baker(NJ,USA).2.2.Methods2.2.1.SamplepreparationTheedibleportionsandseedsofthefiveselectedfruitswerefreeze-dried(-50℃,24h).Freeze-driedsampleswereseparatelygroundusingastainless-steelgrinder.Portionsofthefreeze-driedgroundmangoseedkernelsweredefattedwithpetroleumetherbytheSoxhletmethod.Thedefattedmealswereair-driedfor12htoremovealltracesofsolvent.Allthesampleswerestoredinvacuum-packagedpolyethylenepouchesat-20℃untilrequiredforanalysis.Fortheanalysisoffreshfruits,theedibleportionsandseedsweregroundjustbeforeuse.Approximately1gand200mgofeachoftheedibleportionsorseedswereaccuratelyweighedandrefluxedwithatotalvolumeof20or50mlofethanol:water(50:50,v/v),respectively,inawaterbathat70℃foronehour.TheextractswerethenpassedthroughaWhatmanno.4filterpaper.Portionsofthefreshmangoseedkernelsweredriedinaconventionalair-oven(35,105℃)untilaconstantweightwasattained.Thosethathadbeenoven-driedat105℃werethenre-heatedat140±2,or160±2,or180±2or200±2℃for20minintheoven.Weighedamounts(200mg)ofeachoven-driedandheatedsamplewererefluxedwith50mlofethanol:water(50:50,v/v)inawaterbathat70℃foranhour.Theextractswerethenfilteredasabove.AllfiltratesweredirectlymeasuredintheABTS,FRAPandFCRassays(seebelow).Triplicateextractionswerepreparedfromeachsampleandallextractsweremeasuredfivetimesineachassay.Themeanvaluesofantioxidantcapacityandphenoliccontentwerecalculated.2.2.2.ABTScationradical-scavengingassayTheABTScationradical-scavengingassaywascarriedoutusinganUV/visiblespectrophotometer(ShidmazuUV-1601)withaShidmazuCPS-240Atemperaturecontroller.TheprocedurewasadaptedfromapreviousreportbyRobertetal.(1999).Briefly,stocksolutionwaspreparedbyreacting7mMABTSwith2.45mMpotassiumpersulfatetogeneratetheABTScationchromophore.Themixturewasdilutedwithabsoluteethanoltogiveanabsorbanceof1.5–2at414nm.Analiquotofthesamples(10–40μl)wasaddedto3mlofABTSreagentandtheabsorbancereadingwastakenafterinitialmixingandupto90minuntilitreachedaplateau.Totalantioxidantcapacitywascalculatedrelativetothereactivityofascorbicacidasastandardunderthesameconditionsandtheresultswereexpressedaslmol/gAEAC.2.2.3.Ferric-reducingantioxidantpowerassayTheFRAPassaywascarriedoutbyusingamodifiedmethodofBenzieandSzeto(1999).Analiquotofthesamples(10–40μl)wasmixedwith3mlofferric-TPTZreagent.Thechangeinabsorbancewasmeasuredat593nmafterinitialmixingandupto90minuntilitreachedaplateau.AqueoussolutionsofknownFe(II)concentration(FeSO4·7H2O)wereusedforcalibrationoftheFRAPassayandantioxidantpowerwasexpressedaslmol/gFRAP.Astheantioxidantactivityisstronglydependentonthemodelsysteminwhichitisevaluated,asingleanalyticalassaymaybeinadequate.Therefore,bothABTSassayandFRAPassaywereusedforthemeasurementoftotalantioxidantcapacity.2.2.4.Folin–CiocalteureagentassayTheFolin–Ciocalteureagentassaywasusedtodeterminethetotalphenolicscontent(Singleton&Rossi,1965).Analiquotofthesamples(10–40μl)wasmixedwith1.8mlofFolin–Ciocalteureagentpreviouslydilutedwithdistilledwater(1:10).Thesolutionwasallowedtostandat25℃for5minbeforeadding1.2mlof15%sodiumcarbonatesolutionindistilledwater.Theabsorbanceat765nmwasreadafterinitialmixingandupto90minuntilitreachedaplateau.Gallicacidwasusedasastandardforthecalibrationcurve.ThetotalamountofphenoliccompoundswascalculatedandexpressedasGAE(mg/g).3.Resultsanddiscussion3.1.DeterminationoftotalantioxidantcapacityandphenoliccontentofedibleportionsandseedsoffruitsSolventextractionisfrequentlyusedforisolationofantioxidantsandbothextractionyieldandantioxidantactivityofextractsarestronglydependentonthesolvent,duetothedifferentantioxidantpotentialsofcompoundswithdifferentpolarity(Julkunen-Tiito,1985;Marinova&Yanishlieva,1997).Theethanol–watersystemswereusedasextractionsolutionsinthepresentstudiesastheyarethemostwidelyemployedsolventsforhygieneandabundancereasons;also,thesolventiscompatiblewithfood.Thetotalantioxidantcapacityandpolyphenolcontentvaryconsiderablyfromonekindoffruittoanother.Inaddition,theyarefoundtobedifferentfordifferentpartsofthefruits.Antioxidantactivityandphenoliccontentofbothedibleportionsandseedsofavocado,jackfruit,longan,mangoandtamarindweremeasuredbytheuseofABTS,FRAPandFCRassays,whichwerecarriedoutonthreedifferentindependentoccasions,usingfruitpurchasedonthreeseparateoccasions.TheAEAC,FRAPandGAEoffruitseedsandedibleportionsarepresentedasmeansofthreedeterminations±SD(standarddeviation).Onthebasisofthewetweight,mangoseedkernelhadthehighestantioxidantactivity,followedbytheseedsoftamarind,longan,avocado,andjackfruit.Fortheedibleportion(wetweight),tamarindshowedthehighestantioxidantactivity,followedbythemango,avocado,longanandjackfruit.Onthebasisofdryweight,mangoseedkernelalsohadthehighestantioxidantactivityandphenoliccontent,followedbytheseedsoftamarind,avocado,longan,andjackfruit.Fortheedibleportion(dryweight),tamarindalsoshowedthehighestantioxidantactivityandphenoliccontent,followedbymango,longan,avocadoandjackfruit.Overall,seedsshowedamuchhigherantioxidantcapacityandphenoliccontentthantheedibleportionsinthefruitstested.Theirphenoliccontentsarecorrelatedwiththeantioxidantactivity,asshowninTable1.Inmostfruits,thecontributionofthefruitseedfractiontothetotalantioxidantactivityandphenoliccontentwasmorethan95%,exceptforjackfruit,whichwasabout70%.Thissuggeststhatthefruitseedsshouldbefurtherutilizedratherthanjustdiscardedaswaste.3.2.ScavengingeffectofextractsfromheatedMSKPproductsonABTScationradicalAsmangoseedkernelshowedthehighestantioxidantactivityandphenoliccontentamongthesamplestested,itwassubjectedtoheatinginordertoevaluatetheeffectofdifferentdegreesofheatingontheantioxidantcapacityandphenoliccontent.InIndia,mangoseedkernelistraditionallyroastedandeatenbythetribalpeople,soitisassumedtobesuitableforhumanconsumption.However,somefurtherworkonpossibletoxicityoftheproductiscurrentlyunderway.Mangoisoneofthemostimportanttropical/subtropicalfruits(Ramteke,Vijayalakshmi,&Eipeson,1999).Worldmangoproductionreached23,800,000metrictonin1999,whichis1.2millionmetrictonhigherthanthe1995productionbasedonFAOstatistics.India,China,Mexico,Thailand,Philippines,Pakistan,Nigeria,Indonesia,BrazilandEgyptarethetoptenmango-producingcountriesintheworldandproductionisheavilyconcentratedinAsia.Thefreeze-driedandoven-driedMSKPproductsshowedsimilarantioxidantcapacities(Tables1and2),whichillustratedtherelativeheatstabilityoftheantioxidantsubstances.Surprisingly,theethanolicextractsofheatedMSKPproductsshowedhigherantioxidantactivitiesintheABTScationradical-scavengingassaythandidtheoven-driedMSKPproducts.Adecreaseintotalantioxidantcapacitywasonlyobservedwhenheatingtemperaturewasincreasedabove160℃.AsshowninTable1,theAEACoftheethanolicextractsofdefattedMSKPproductswasreducedby30%withrespecttothosesamplesfreeze-dried.Eventhoughthereissomelossofphenolics(extractedbypetroleumether),thedifferenceindicatedthepresenceofnon-phenolictypeantioxidants.Severalnaturallipophilicantioxidants,suchasphospholipids,tocopherolsandcarotenoids,arereportedtooccurinmangoseedkernel,butmostofthesewouldbeexpectedtobedegradedatelevatedtemperature(Azizah,NikRuslawati,&SweeTee,1999).However,ahigherantioxidantcapacitywasobservedintheethanolicextractsofheatedMSKPproductsthaninthosefreeze-dried.Themostlikelyexplanationforthehigherantioxidantactivity,atleastinpart,isanincreasedantioxidativeprincipleduetothegenerationandaccumulationofMaillard-typeantioxidants(MRP)duringtheheatingprocess.ThissuggestionisfurtherconfirmedinarecentpaperbyAntonio,Alessandra,andGiampaola(2003)whoshowedanincreaseinhydroxymethylfural,anintermediateinMRPproduction,inplumsdriedat60and85℃,respectively.MRPsareobtainedbyreactionsbetweensugarsandaminoacids,peptides,orenzymicproteinhydrolysatesandtheyaresuggestedtohavevaryingdegreesofantioxidantactivity,dependingontheirorigin(Kim,Hayase,&Kato,1986;Yamaguchi,1986).Nevertheless,MRPsarealsoexpectedtobedegradedatelevatedtemperature,whichmayexplainthereductionintheantioxidantactivityofextractsfromMSKPheatedatabove160℃(Azizahetal.,1999).3.3.ReducingpowerofextractsfromheatedMSKPproductsAlthoughABTSandFRAPassayswerecarriedoutindifferentsolutions,namely,ethanolandaqueousbuffer,respectively,andtheyworkbydifferentmechanisms,i.e.,scavengingofABTScationradicalsintheABTSassayandreductionofferricionintheFRAPassay,theresultsfromthesetwoassaysweresignificantlycorrelatedinallexaminedsamples(Fig.1).Sincetheoptimumantioxidantactivityofmangoseedkernelswasattainedaftermildheatingfrom140to180℃for20min,functionalfood(s)mightbedevelopedbasedonsuchproductsorthepurifiedextractsbeingincorporatedintofoodproductstogivetherapeuticeffects.Theunder-utilizationofthemangoseedkernelcouldbepartlyduetothelimitedknowledgeofitstoxicologicalproperties.AccordingtoBerger,Saharty,andKrings(1999),thesmallamountsoftoxiccompoundsgeneratedundermildroastingconditionsarehighlyunlikelytohaveanadverseeffectonhumanconsumers.InNigeria,mangoseedkernelisprocessedintoapowder,e.g.,processedmangokernelflour,whichcanbesubstitutedforwheatflourinbiscuits(Arogba,1999).Thelipidcompositionsofvariousmangokernelvarietieshaverecentlyattractedincreasedresearchinterestbecauseoftheirpotentialapplicationintheconfectioneryindustryasasourceofacocoa–buttersubstitute(Ali,Gafur,Rahman,&Ahmed,1985;Gaydou&Bouchet,1984;Hemavathy,Prabhakar,&Sen,1987;Lakahminarayana,Rao,Ramalingaswamy,&ChandrasekharaRao,1983;Rukmini&Vijayaraghavan,1984).RukminiandVijayaraghavan(1984)reportedthattoxicitywasnotevidentinratsfedwithdietscontaining100g/kgofmangokernelcrudefat.Byextrapolation,consumptionof0.4kgofthekernelor0.8kgoftheprocessedflourper70kgbodyweightisdeemedsafe.Basedonthetoxicologicalevaluationsconductedonthemangoseedkernelsinthepastandtheavailabilityofhugeamountsofkernels,theyseempromisingasapossiblesourceofsafeantioxidants.3.4.TotalpolyphenolsinextractsfromMSKPproductswithdifferentdegreesofheatingThetemperatureduringthedryingandheatingprocessaffectscompoundstabilityduetochemicalandenzymaticdecomposition,lossesbyvolatizationorthermaldecomposition;theselatterhavebeensuggestedtobethemainmechanismscausingthereductionofpolyphenolcontents.However,thetotalpolyphenolsinextractsofMSKPproductsincreasedfrom117to160mg/gofGAEafterheatingto160℃.Thisismostlikelyattributedtotheformationofphenolicsubstancesundermilderheatingtemperaturewhereaspolyphenolsaredegradedatelevatedheatingtemperatures.AsshowninTable1,thetotalpolyphenolcontentsofMSKPproductsheatedat200℃wereconsiderablyreduced.YenandChuang(2000)reportedthatthedecreaseinantioxidantactivityofextractsofroastedCassiatorawasrelatedtothedegradationofpolyphenolsduringroastingatelevatedtemperature.Nicoli,Anese,Manzocco,andFerici(1997)alsoreportedthattheincreaseinantioxidantactivityofcoffeebrewedunderminimumroastingwasduetotheformationofMRPanditsphenoliccontentwhereasthephenolicsweredegradedafterover-roasting.TheincreaseofpolyphenolcontentsofMSKPproductsafterheatingiscorrelatedwiththeincreaseinantioxidantactivityasillustratedinFigs.2and3.Therefore,itmaybesuggestedthattheincreasesinantioxidantactivityofextractsofheatedMSKPproductsarerelatedtotheincreaseinpolyphenolsratherthantheformationofMRPs.Theformationofphenoliccompoundsduringtheheatingprocessmightbeduetotheavailabilityofprecursorsofphenolicmolecules,bynon-enzymaticinterconversionbetweenphenolicmoleculessubjectedtotheeffectsofexternalfactors,suchastemperature.Thus,theplantcompositionandthedegreeofheatingcouldbeimportantfactorscontributingtohightotalpolyphenolcontent.However,furtherinvestigationisneededtotrulyexplainthisphenomenon.4.ConclusionThepresentstudydemonstratesasignificantlyhighertotalantioxidantcapacityandphenoliccontentoffruitseedsthanoftheedibleportions.TheAEACandFRAPofheatedMSKPproductswereincreasedtoconsiderablymorethanthoseoffreeze-driedsamples.ThiswasmostlikelyduetotheproductionofMRPsortheirintermediateswithpotentantioxidantactivity,despiteseveralothernaturallipophilicantioxidantsbeingdegraded.Alternativelyorinaddition,itmightalsobeduetotheformationofphenoliccompoundsastheincreaseofpolyphenolcontentsinMSKPproductsafterheatingiscorrelatedwiththeincreaseinantioxidantactivity.ThetotalantioxidantactivityandphenoliccontentwerediminishedwhenMSKPwasheatedabove160℃.Therefore,itmightbepossibletouseextractsofMSKPproductsheatedbetween105and160℃asanadditiveincertainfunctionalfoodstoboosttheirantioxidantcapacity.Beforefinalrecommendationsaremadeitisnecessarytofurtherconfirmthelackoftoxicityfromsuchmaterialandtoinvestigatefurtherdose/activityrelationships.ReferencesAlberto,J.N.S.,Herman,T.V.C.,Juan,A.,Johanes,G.,Fabio,N.,Francesco,D.S.,&Luca,R.(2002).Isolationandquantitativeanalysisofphenolicantioxidants,freesugars,andpolyolsfrommango(MangiferaindicaL.)stembarkaqueousdecoctionusedinCubaasnutritionalsupplement.JournalofAgriculturalandFoodChemistry,50,762–766.Alessandra,B.,Marie-Elisabeth,C.,Hubert,R.,&Claudette,B.(1998).Antioxidantactivityandphenoliccompositionofcitruspeelandseedextracts.JournalofAgriculturalandFoodChemistry,46,2123–2129.Ali,M.A.,Gafur,M.A.,Rahman,M.S.,&Ahmed,G.M.(1985).Variationsinfatcontentandlipidclasscompositionintendifferentvarieties.JournaloftheAmericanOilChemistsSociety,62,520–523.Antonio,P.,Alessandra,D.C.,&Giampaola,C.(2003).Fromplumstoprunes:Influenceofdryingparametersonpolyphenolsandantioxidantactivity.JournalofAgriculturalandFoodChemistry,51,3675–3681.Arogba,S.S.(1999).Theperformanceofprocessedmangokernelflourinamodelfoodsystem.BioresourceTechnology,70,277–281.Arogba,S.S.(2000).Mangokernel:Chromatographicanalysisofthetannin,andstabilitystudyoftheassociatedpolyphenolsoxidaseactivity.JournalofFoodCompositionAnalysis,13,149–156.Azizah,A.H.,NikRuslawati,N.M.,&SweeTee,T.(1999).Extractionandcharacterizationofantioxidantfromcocoabyproducts.FoodChemistry,64,199–202.Balasinska,B.,&Troszynska,A.(1998).Totalantioxidantactivityofeveningprimrose(Oenotheraparadoxa)cakeextractmeasuredinvitrobyliposomemodelandmurineL1210cells.JournalofAgriculturalandFoodChemistry,46,3558–3563.Benzie,I.F.F.,&Szeto,Y.T.(1999).Totalantioxidantcapacityofteasbytheferricreducing/antioxidantpowerassay.JournalofAgriculturalandFoodChemistry,47,633–636.Berger,R.G.,Saharty,Y.S.,&Krings,U.(1999).Mittelzurstabilisierungvonlebensmittelnundkosmetischenmittelnsowieverfahrenzudessenherstellung.PCTpatentapplication,PCT/DE99/02258.Diplock,A.,Charleux,J.,Grozier-Willi,G.,Kok,K.,Rice-Evans,C.,Roberfroid,M.,Stahl,W.,&Vina-Ribes,J.(1998).Functionalfoodsciencesanddefenceagainstreactiveoxidativespecies.BritishJournalofNutrition,80,77–82.Gaydou,E.M.,&Bouchet,P.(1984).Sterols,methylsterols,triterpenealcoholsandfattyacidsofthekernelfatofdifferentMalagasymangovarieties.JournaloftheAmericanOilChemistsSociety,61,1589–1593.Geissman,T.A.,&Dittmar,H.F.K.(1965).Aproanthocyanidinfromavocadoseed.Phytochemistry,4,359–368.Halliwell,B.(1997).Antioxidantsandhumandisease:Ageneralintroduction.NutritionReviews,55,44–52.Hemavathy,J.,Prabhakar,J.V.,&Sen,D.P.(1987).Compositionofpolarlipidsofaalphonsomangokernel.JournalofFoodScience,52,833–834.Jayaprakasha,G.K.,Singh,R.P.,&Sakariah,K.K.(2001).Antioxidantactivityofgrapeseed(Vitisvinifera)extractsonperoxidationmodelsinvitro.FoodChemistry,73,285–290.Julkunen-Tiito,R.(1985).Phenolicconstituentsintheleavesofnorthernwillows,methodsfortheanalysisofcertainphenolics.JournalofAgriculturalandFoodChemistry,33,213–217.Kim,S.B.,Hayase,F.,&Kato,H.(1986).Desmutageniceffectsofmelanoidinsagainstaminoacidandproteinpyrolyzates.DevelopmentofFoodScience,13,383–392.Krygier,K.,Sosulski,F.,&Hogge,L.(1982).Free,esterified,andinsoluble-boundphenolicacids.1.Extractionandpurificationprocedure.JournalofAgriculturalandFoodChemistry,30,330–334.Kubicka,E.,Jedrychowski,L.,&Amarowicz,R.(1999).Effectofphenoliccompoundsextractedfromsunflowerseedsonnativelipoxygenaseactivity.GrasasyAceites,50,3206–3209.Lakahminarayana,G.,Rao,T.C.,Ramalingaswamy,R.A.,&ChandrasekharaRao,T.(1983).Varietalvariationsincontent,characteristicsandcompositionofmangoseedsandfat.JournaloftheAmericanOilChemistsSociety,60,88–89.Marinova,E.M.,&Yanishlieva,N.VI(1997).AntioxidativeactivityofextractsfromselectedspeciesofthefamilyLamiaceaeinsunfloweroil.FoodChemistry,58,245–248.Naczk,M.,Amarovicz,R.,Sullivan,A.,&Shahidi,F.(1998).Currentresearchdevelopmentsonpolyphenolicsofrapeseed/canola,areview.FoodChemistry,62,489–502.NarasimhaChar,B.L.,&Azeemoddin,G.(1989).Ediblefatfrommangostones.ActaHorticulture,231,744–748.NarasimhaChar,B.L.,Reddy,B.R.,&ThirumalaRoa,S.D.(1977).Processingofmangostonesforfat.JournaloftheAmericanOilChemistsSociety,54,494–498.Nicoli,M.C.,Anese,M.,Manzocco,L.,&Ferici,C.R.(1997).Antioxidantpropertiesofcoffeebrewsinrelationtotheroastingdegree.Lebensmittel-WissenschaftUnd-Technologie-FoodScienceandTechnology,30,292–297.Oomah,B.D.,Kenaschuk,E.O.,&Mazza,G.(1995).Phenolicacidsinflaxseed.JournalofAgriculturalandFoodChemistry,43,2019–2026.Puravankara,D.,Boghra,V.,&Sharma,R.S.(2000).Effectofantioxidantprinciplesisolatedfrommango(MangiferaindicaL.)seedkernelsonoxidativestabilityofbuffaloghee(butter-fat).JournaloftheScienceofFoodandAgriculture,80,522–526.Ramarathnam,N.,Osawa,T.,Ochi,H.,&Kawakishi,S.(1995).Thecontributionofplantfoodantioxidantstohumanhealth.TrendsinFoodScienceandTechnology,6,75–82.Ramteke,R.S.,Vijayalakshmi,M.R.,&Eipeson,W.E.(1999).Processingandvalueadditiontomangoes.IndianFoodIndustry,18,155–163.Robert,R.E.,Pellegrini,N.,Proteggente,A.,Pannala,A.,Yang,M.,&Rice-Evans,C.(1999).AntioxidantactivityapplyinganimprovedABTSradicalcationdecolorizationassay.FreeRadicalBiologyandMedicine,26,1231–1237.Rukmini,C.,&Vijayaraghavan,M.(1984).Nutritionalandtoxicologicalevaluationofmangokerneloil.JournaloftheAmericanOilChemistsSociety,61,780–792.Shahidi,F.,Amarovicz,R.,Abou-Gharbia,H.A.,&Shehata,A.A.Y.(1997).Endogenousantioxidantsandstabilityofsesameoilasaffectedbyprocessingandstorage.JournaloftheAmericanOilChemistsSociety,74,143–147.Singleton,V.L.,&Rossi,J.A.(1965).Colorimetryoftotalphenolicswithphosphomolybdic-phosphotungsticacidreagents.AmericanJournalofEnologyViticulture,16,144–158.Tsaliki,E.,Lagouri,V.,&Doxastakis,G.(1999).Evaluationoftheantioxidantactivityoflupinseedflourandderivatives(Lupinusalbusssp.Graecus).FoodChemistry,65,71–75.Tsuda,T.,Watanabe,M.,Ohshima,K.,Yamamoto,A.,Kawakishi,S.,&Osawa,T.(1994).Antioxidativecomponentsisolated
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國青年政治學院《信息可視化設計》2023-2024學年第一學期期末試卷
- 浙江中醫(yī)藥大學濱江學院《項目投資與融資》2023-2024學年第一學期期末試卷
- 美妝陳列知識培訓課件
- 2024政外管線接入工程施工01合同段施工臨時用電安全協(xié)議3篇
- 酒店管理工作中的客房管理
- 2025年度文化產(chǎn)業(yè)融資擔保服務協(xié)議3篇
- 服裝設計師的時尚潮流與個性表達
- 雙十一餐飲營銷指南模板
- 2024年財產(chǎn)分割協(xié)議:離婚股權(quán)分配
- 2024年足球場地草坪種植及維護服務合同
- 疼痛科護士的疼痛評估與疼痛程度劃分
- 安全管理計劃指標和指標體系
- 倉庫物料盤點作業(yè)規(guī)范培訓課件
- 無線網(wǎng)絡技術(shù)滿分期末大作業(yè)
- 2023無人機搭載紅外熱像設備檢測建筑外墻及屋面作業(yè)
- 《西游記》電子版閱讀-小學版
- 2021-2022學年北師大版六年級(上)數(shù)學寒假作業(yè)(一)
- 班組安全生產(chǎn)標準化管理手冊
- 攝影初級培訓教程課件
- 幼兒園裝修合同
- GB/T 42615-2023在用電梯安全評估規(guī)范
評論
0/150
提交評論