版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
97/97
AcademicYear:(2012/2013)
Enrolmentnumber:12014664
Fullname:SijunWu
Course:BEngHonorsDegreeinElectricaland
ElectronicEngineering
ProjectTitle:Real-TimeComputerLevelControlofaWaterTank
1stSupervisor:GuopingLiu
2ndSupervisor:DrMikePrice
Date:April2013
Real-TimeComputerLevelControlofaWaterTank
Student:SijunWu
ID:12014664
Date:April2013
UniversityofGlamorgan
DissertationsubmittedinpartialfulfillmentfortheBEnginElectricalandElectronicEngineering.
FacultyofAdvancedTechnology
Declaration
Iunderstandthenatureofplagiarism,andIamawareoftheUniversity’spolicyonthis.
Ideclarethatthisdissertationistheresultofmyownindependentinvestigationandthatallsourceshavebeenappropriatelyacknowledgedinthebibliography.
Signature:Date:
Abstract
Withthedevelopmentofthetimes,Controlsystemisplayinganincreasinglyimportantroleinvariousfields.Watertankcontrolsystemisatypicalmodelofcontrolsystem.Controlofwatertankcanbeusedasthebasisofresearchintomorecomplexnonlinearsystem,Itnotonlyhasastrongtheoretical,belongstotheapplicationofbasicresearch,butalsoitwithstrongcomprehensive.Itcontainscontroltheory,intelligentcontrol,fluidmechanics,andotherdisciplines.
People'slifeandindustrialproduction,andmanyotherareasofteninvolveliquidlevelandflowcontrolproblem,forexampleinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.Sotheliquidheightisanimportantparameteroftheindustrialprocesscontrol,especiallyinadynamicstate.Byusingsuitablemethodstodetecttheliquidlevelcancontrolitcanreceivegoodeffect.
Inthisfinalprojectdesign,Idutyistodesignawatertankliquidlevelcontrolsystem,whichinvolvesthedynamicliquidlevelcontrol,themodelingofthecontrolsystem,PIDparameterssetting.Iwilldiscussusingdifferentcontrolmethodstoachievecontrolrequire,forinstance,Proportionalcontroller,PIcontroller.Iwilldiscussbothdesignprocessesandtestresultsinthispaper.WhatmoreIwillintroducesomemainsoftwarewhichincludesMATLAB,SIMULINK,andNetConSystems.
Keywords:positioncontrol,PIcontroller,PIDparameterssetting,software
Acknowledgement
Firstofall,Iwantappreciatemyfirstsupervisorandsecondsupervisor.Icouldnotachievemyprojectwithouttheirhelp.EspeciallyprofessorGuopingLiu,hegivesmegreatsupport.Whensomequestionsreallyconfuseme,healwaysfillsofpatientandanswerforme.Heencouragesmeandteachesmehowtosolvetheproblems.Henotonlyteachesmeknowledgebutalsocreativemyabilityofresearchtheessentialoftheproblem.Nomatterinthetheoreticalknowledgeandpracticaltest.
SecondlyIwanttoappreciatetheUniversityofGlamorgan.Theygivemeopportunitytolearnthetheorywiththerealapplication.
ThirdlyIwanttosaythankstoBeijingUniversityofCivilEngineeringandArchitecturewhereIusedtostudy.TheygavemethechancetostudyintheUniversityofGlamorgannow.Iwanttoappreciatemyteacherinchina,especiallyprofessorZhijianJiang.
AtlastIwanttosaythanktoanypeoplewhosupportme.Especiallythankstomyparentsandmyfriends.
AllofyouareveryimportantformeandIreallyappreciatethehelpthatyougavemeinthiswholeyear.
content
Abstract
4
Acknowledgement
5
content
6
Figurelist
9
Chapter1.ProjectOverview
11
1.1 AimandObjectives:
11
1.2GeneralBackground:
11
1.2.1Singlewater-tanksystem
11
1.2.2Couplewater-tanksystem
12
Chapter2.SoftwareIntroduction
14
2.1MATLABIntroduction
14
2.2Simulinkintroduction
16
2.3NetConSystem
17
2.3.2NetConLink
18
2.3.3NetConTop
19
Chapter3.HardwareIntroduction
20
3.1Coupled-tanksystemdescription
20
3.2Componentnomenclature
21
3.3componentdescription
22
3.3.1Overallframeandwatertanks
22
3.3.2Pump
22
3.3.3Pressuresensor
22
3.4Coupled-tankmodelparameters
22
Chapter4.Theoryandmathematicalmodel
25
4.1Mathematicalmodel
25
4.2Mathematicalmodeloftheupperwatertank
25
4.2.1Upperwatertanklevelmodelingnonlinearequationofmotion
25
4.2.2Upperwatertanklevelmodelinglinearizationandsystemtransferfunction
28
4.3Mathematicalmodelofthecouplewatertank
31
4.3.1Couplewatertanklevelmodelingnonlinearequationofmotion
31
4.3.2Couplewatertanklevelmodelinglinearizationandsystemtransferfunction
33
Chapter5.IntroductionofcontrolsystemsandControllerDesign
37
5.1Introductionofcontrolsystems
37
5.2Upperwatertankwaterlevelcontrollerdesign
38
5.2.1UpperwatertankwaterlevelP-plus-feedforwardcontroller
38
5.2.2UpperwatertankwaterlevelPI-plus-feedforwardcontroller
42
5.2.3UpperwatertankwaterlevelCascadeandfeedbackcontroller
46
5.3Couplewatertankwaterlevelcontrollerdesign
48
5.3.1TheInstructionsforthecascadesystem.
48
5.3.2CouplewatertankwaterlevelPI-plus-feedforwardcontroller
49
Chapter6.Thesimulationofthesystemcontroller
52
6.1Thesimulationofupperwatercontroller
52
6.1.1SimulationofProportionalcontroller
52
6.1.2Simulationofproportionalintegralcontroller
54
6.1.3Simulationofcascadeandfeedbackcontroller
55
6.2Thesimulationofcouplewatertankcontroller
57
Chapter7.Actualexperimentaloperationandtestresults
61
7.1TheInstructionsforactualexperimental
61
7.1.1TheInstructionsforthedigitaltoanalogandanalogtodigitalconversion
61
7.1.2TheInstructionsforusingNetConSystemNetConLinkandNetConTop
62
7.1.3Waterlevelsensorcalibration
64
7.14look-uptable
65
7.1.5Limitvoltageprotectionsystem
66
7.2Experimentalresultsandanalysisoftheupperwatertank
67
7.2.1ExperimentalresultsofP-plus-feedforwardcontroller
67
7.2.2ExperimentalresultsofPI-plus-feedforwardcontroller
69
7.2.3Experimentalresultsofcascadeandfeedbackcontroller
71
7.3Experimentalresultsandanalysisofthecouplewatertank
73
Chapter8.Mistakeanalysis
76
Chapter9.Conclusions
77
Chapter10.FutureWork
78
Reference
79
Appendix1
80
Appendix2
97
Figurelist
Figure1.IllustratingtheAnalogy
Figure2.SchematicoftheCoupled-Tankplant
Figure3TheoverallNetConsystem
Figure4NetController
Figure5InterfaceofNetConLink
Figure6UserInterfaceofNetConTopsoftware
Figure7Coupled-tankModel
Figure8Coupled-tankComponent
Figure9Upperwatertanklevelmodel
Figure10Theopen-looptransferfunctionoftheupperwatertank
Figure11couplewatertanklevelmodel
Figure12Theopen-looptransferfunctionofcouplewatertank
Figure13Open-loopcontrolsystem
Figure14Close-loopcontrolsystem
Figure15P-plus-feedforwardclose-loopcontrolsystem
Figure16Stepresponseofafirstordersystem-timeconstant
Figure17PI-plus-feedforwardclose-loopcontrolsystem
Figure18Cascadeandfeedbackcontrolsystem
Figure19Theblockofwholesystem
Figure20Cascadesystem
Figure21TheblockdiagramofCouplewatertankwaterlevelPI-plus-feedforward
Controlsystem
Figure22TheblockdiagramofProportionalcontroller
Figure23TheblockdiagramofProportionalintegralcontroller
Figure24TheblockdiagramofProportionalcontroller
Figure25TheblockdiagramofcouplewatertankPIcontroller
Figure26Thesystemamplitudeoscillationcurve
Figure27couplewatertankPIcontrollersimulationresults
Figure28Digital-to-analogandanalog-to-digitalconverter
Figure29NetConset
Figure30NetConset
Figure31NetConset
Figure32NetConset
Figure33NetConTopset
Figure34NetConTopset
Figure35Calibrationmodel
Figure36Calibrationcircuitboard
Figure37Saturationblock
Figure38Saturationset
Figure39Proportionalcontrolsystemblockdiagram
Figure40P-plus-feedforwardcontrollerexperimentresult1
Figure41P-plus-feedforwardcontrollerexperimentresult2
Figure42PI-plus-feedforwardcontrolsystemblockdiagram
Figure43PI-plus-feedforwardcontrollerexperimentresult1
Figure44PI-plus-feedforwardcontrollerexperimentresult2
Figure45PI-plus-feedforwardcontrollerexperimentresult3
Figure46Cascadeandfeedbackcontrolsystemblockdiagram
Figure47Cascadeandfeedbackcontrollerexperimentresult1
Figure48Cascadeandfeedbackcontrollerexperimentresult2
Figure49Cascadeandfeedbackcontrollerexperimentresult3
Figure50CouplewatertankPI-plus-feedforwardcontrolsystemblockdiagram.
Figure51CouplewatertankPI-plus-feedforwardcontrollerexperimentresult1
Figure52CouplewatertankPI-plus-feedforwardcontrollerexperimentresult2
Figure53CouplewatertankPI-plus-feedforwardcontrollerexperimentresult3
Figure54CouplewatertankPI-plus-feedforwardcontrollerexperimentresult4
Chapter1.ProjectOverview
AimandObjectives:
Theaimoftheproject:
Thekeyaimoftheprojectistoapplyvariouscontrolstrategiestoreal-timelevelcontrolofawatertankusingcomputers.
Theobjectivesoftheprojectinclude:
Understandthelevelcontrolproblemofawatertank;
Studyclassandadvancecontrolmethods,e.g.,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol,etc.
Befamiliarwiththefollowingsoftware:Matlab,Simulink,Real-TimeWorkship,NetConSystem;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)inSimulinkforclosed-looplevelcontrolbasedonthemodelofawatertank;
Simulatevariouscontrolstrategies(e.g.,PI,PIDcontrol,optimalcontrol,adaptivecontrol,fuzzycontrol)ontheNetConSystemforreal-timeclose-looplevelcontrol,basedonthemodelofawatertank;
Applythesimulatedcontrolstrategiestoapracticallevelcontroltestrig.
1.2GeneralBackground:
1.2.1Singlewater-tanksystem
NowdayinInhabitantdomesticwatersupply,beverages,foodprocessingandotherindustriestheproductionprocess,weusuallyneedtousethewatertank,itneedtomaintaintheappropriatelevel,neithertoooverflowcausewaste,alsocannottoolittleandcan'tmeetthedemand.
Amodelofsinglewater-tankisshowasthefigureonebelow.V1iswaterdrainvalve.V2istheinletvalve.Theliquidlevelofthecontrolrequirementish0.Thewaterflow,whichdrainintothetankiscontrolledbyV2valve,waterflow,whichdrainsoutofthetank,iscontrolledbyV1valve.TheV1openlibraryischangewiththeneedsofusers.Asaconsequencetocontrolthevariablevalueofthewaterlevelh0itistransfertocontroltheWaterinflow.Inisexperimenttoachievecontroltheinletflowbyusingchangethevoltagewhichisdriventhepump.
Figure1.IllustratingtheAnalogy
1.2.2Couplewater-tanksystem
Coupletankwaterisatypicalmodelofnonlineardelayobjects,muchofthecontrolledobjectinindustrialwholeorpartialcanbeabstractedasmathematicsmodelofdoublewatertank.Ithasstrongrepresentationandstrongindustrialbackground.Inindustrialproductionthemathematicalmodelingandcontrolstrategyofcouplewatertankhastheguidingsignificanceinresearchofliquidlevelcontrolsystem.Suchasindustrialboilers,moldlevelcontrol.
Asisshowedbelowthefigure2isthecouplewatertank.Theexperimentsrequireiscontrolthebottomtankwaterlevelfromthewaterflowcomingoutofthetoptank.
Figure2.SchematicoftheCoupled-Tankplant[1]
Tobemorespecific,thesetabovetwoexperimentalsequencesareaimedat:
HowtomathematicallymodeltheCoupled-Tankfromfirstprinciplesinordertoobtainthetwoopen-looptransferfunctionscharacterizingthesystem,intheLaplacedomain.
Howtolinearizetheobtainednon-linearequationofmotionaboutthequiescentpointofoperation.
Howtodesign,thoughpoleplacement,aproportional-plus-integral-plus-feedforward-basedcontrollerfortheCoupled-Tanksysteminorderforittomeettherequireddesignspecificationsforeachconfiguration.
Howtoimplementeachconfigurationcontrollerinreal-timeandevaluatetheiractualperformance.
Chapter2.SoftwareIntroduction
2.1MATLABIntroduction
MATLABisaprogrammingenvironmentforalgorithmdevelopment,dataanalysis,visualization,andnumericalcomputation.UsingMATLAB,youcansolvetechnicalcomputingproblemsfasterthanwithtraditionalprogramminglanguages,suchasC,C++,andFORTRAN.
YoucanuseMATLABinawiderangeofapplications,includingsignalandimageprocessing,communications,controldesign,testandmeasurement,financialmodelingandanalysis,andcomputationalbiology.Foramillionengineersandscientistsinindustryandacademia,MATLABisthelanguageoftechnicalcomputing[2].
KeyFeatures:
High-levellanguagefortechnicalcomputing
Developmentenvironmentformanagingcode,files,anddata
Interactivetoolsforiterativeexploration,design,andproblemsolving
Mathematicalfunctionsforlinearalgebra,statistics,Fourieranalysis,filtering,optimization,andnumericalintegration
2-Dand3-Dgraphicsfunctionsforvisualizingdata
Toolsforbuildingcustomgraphicaluserinterfaces
FunctionsforintegratingMATLABbasedalgorithmswithexternalapplicationsandlanguages,suchasC,C++,Fortran,Java?,COM,andMicrosoftExcel
MATLABcanbeusedinfollowingworks:
(1).Creatingtransferfunctions
Atransferfunctioncanbeexpressedasanumeratorpolynomialdividedbyadenominatorpolynomial,thatis,F(s)=N(s)/D(s).Thenumerator,N(s),isrepresentedbyarowvector,numf,thecontainsthecoefficientsofN(s).Similarly,thedenominator,D(s),isrepresentedbyarowvector,denf,thatcontainsthecoefficientsofD(s).WeformF(s)withthecommand,F=tf(numf,denf).Fiscalledalineartime-invariant(LTI)object,ortransferfunction,canbeusedasanentityinotheroperations,suchasadditionormultiplication.
(2)Timeresponse
WecanuseMATLABtocalculatecharacteristicsofasecondordersystem,suchasdampingratio,;naturalfrequency;percentovershoot,%OS;settlingtime,Ts;andpeaktime,Tp.
(3)Stability
MATLABcansolveforthepolesofatransferfunctioninordertodeterminestability.Also,wecanuseMATLABtofindtherangeofgainforstabilitybygeneratingaloop,changinggain,andfindingatwhatgainweobtainright-half-planepoles.
(4)Steady-stateerror
Staticerrorconstantsarefoundusingas.Oncethestaticerrorconstantisfound,wecanevaluatethesteady-stateerror.
(5)Rootlocustechniques
MATLABallowsrootlocitobeplottedwiththerlocus(GH)command.Pointsontherootlocuscanbeselectedinteractivelyusingthe‘rlocfind’command.MATLABthenyieldsthegain(K)atthatpointaswellasallotherpoles(p)thathavethatgain.Wecanzoominandoutoftherootlocusbychangingtherangeofaxisvalues.Therootlocuscanbedrawnoveragridthatshowsconstantdampingratio()andconstantnaturalfrequency()
(6)FrequencyResponseTechniques
WecanuseMATLABtomakeBodeplotsusingbode(G),whereG/(s)=numg/dengandGisanLTItransferfunctionobject.Also,wecanuseMATLABtomakeNyquistdiagramsusingNyquist(G)[2].
2.2Simulinkintroduction
SIMULINKisanenvironmentformultidomainsimulationandModel-BasedDesignfordynamicandembeddedsystems.Itprovidesaninteractivegraphicalenvironmentandacustomizablesetofblocklibrariesthatletyoudesign,simulate,implement,andtestavarietyoftime-varyingsystems,includingcommunications,controls,signalprocessing,videoprocessing,andimageprocessing.
Add-onproductsextendSIMULINKsoftware
tomultiplemodelingdomains,aswellasprovidetoolsfordesign,implementation,andverificationandvalidationtasks.
SIMULINKisintegratedwithMATLAB,providingimmediateaccesstoanextensiverangeoftoolsthatletyoudevelopalgorithms,analyzeandvisualizesimulations,createbatchprocessingscripts,customizethemodelingenvironment,anddefinesignal,parameter,andtestdata[3].
KeyFeatures
Extensiveandexpandablelibrariesofpredefinedblocks
Interactivegraphicaleditorforassemblingandmanagingintuitiveblockdiagrams
Abilitytomanagecomplexdesignsbysegmentingmodelsintohierarchiesofdesigncomponents
ModelExplorertonavigate,create,configure,andsearchallsignals,parameters,properties,andgeneratedcodeassociatedwithyourmodel
Applicationprogramminginterfaces(APIs)thatletyouconnectwithothersimulationprogramsandincorporatehand-writtencode
MATLAB
FunctionblocksforbringingMATLABalgorithmsintoSIMULINKandembeddedsystemimplementations
Simulationmodes(Normal,Accelerator,andRapidAccelerator)forrunningsimulationsinterpretivelyoratcompiledC-codespeedsusingfixed-orvariable-stepsolvers
Graphicaldebuggerandprofilertoexaminesimulationresultsandthendiagnoseperformanceandunexpectedbehaviorinyourdesign
FullaccesstoMATLABforanalyzingandvisualizingresults,customizingthemodelingenvironment,anddefiningsignal,parameter,andtestdata
Modelanalysisanddiagnosticstoolstoensuremodelconsistencyandidentifymodelingerrors
2.3NetConSystem
TheNetCon(NetworkedControl)systemisaplatformforteachingandresearchofreal-timecontrolsystemsthroughIntranet/Internet.Itconsistsofthreehardwareandsoftwareparts:NetController,NetConLinkandNetConTop.Classic,modernandadvancedcontrolmethodscaneasilybeimplementedforreal-timecontrolusingtheNetConsystem,whichisbasedonthevisualconfigurationtechnology.[4]
Figure3.TheoverallNetConsystem[4]
2.3.1NetController
NetControlleristhefront-endexecutionunitsofNetConsystem,runningspecificcontrolalgorithms.NetControllerthroughthenetworkinterfacereceivesthemonitoringandcontrolparametersandcontrolcommandfromconfigurationplatform,andcontrolthereal-timerunningstateanduploadedtothemonitoringobjectconfigurationplatform.Itisbasedon32-bitARMmicroprocessor,whichishighperformance,lowpowerconsumption.Itrunningembeddedreal-timeoperatingsystemanduseindustry-specificmodulardesign,providemoreroadinput/outputinterfacestandards,suchasA/DandD/A,PWM,digitalI/O,etc,andalsoprovidesLCDdisplayoutput.Comparedwiththetraditionalfront-endcontroller,networkcontrollerhashigherspeedandlargeraddressingcapability,coupledwithmulti-taskingandreal-timeembeddedoperatingsystemitcancompletelyguaranteethesmoothrunningofcomplexcontrolalgorithms.
Figure4.NetController[4]
2.3.2NetConLink
Networkvisualcontrolconfigurationsoftware(NetConLink)isbasedonMatlab/SimulinkanditcanachieveseamlessandSIMULINKcombined.FirstlyUserscanusevariousmodulesandcustomizationoftheS-functionsystemfunction,whichisprovidingbySimulink.Secondlyusinggraphicalwaytocreatemodelofcontrollerandcontrolledobject.Thencontrolstrategyistestedmanytimesforthewholecontrolsystemoftheofflineandonlineinordertoverifythefeasibility.AfterthatcodeisgeneratedandautomaticallycanbedownloadedintoNetControllerbyNetConLinkinafewseconds.NetConLinkprovideshardwaredrivermoduleandnetworkcontroltoolbox,andprovidetheinterfaceforNetConTop.
Figure5.InterfaceofNetConLink[4]
2.3.3NetConTop
Networkvisualmonitoringconfigurationsoftware(NetConTop)isbasedonWindowsoperatingsystemanditisusedtogeneratecomputinggraphicalmonitoringprogramconfigurationsoftwaredevelopmentplatform.Itprovidesacompleteprogramofsolvingengineeringmonitoringproblems.Userscaneasilydesignvisualmonitorinterface.Itoffersavarietyofstandardconfigurationcontrol,suchasthegraph,instrument,theinputbox,andsupporttheclient/serverarchitecture.Itsmainfunctionsinclude:NetConcontrollerreal-timedataacquisitionandmanagement,real-timemonitoring,commissioningandmanagement.
Figure6.UserInterfaceofNetConTopsoftware[4]
Chapter3.HardwareIntroduction
3.1Coupled-tanksystemdescription
Figure7.Coupled-tankModel[1]
TheCoupled-tankplantmoduleisconsistingbyapumpwithawaterbasinandtwotanks.AsshowninFigure7.Thetwotanksarefixedonthepanel.Agearpumpisinstalledatthebottomofthepanel.Thepumpcanthruststhewaterfromthewaterreservoir,whichisundertheCouple-tanks,throughthehoseaffluxintotheuppertank,suchthatflowfromtheuppertankcandrainthroughanoutletorifice,whichislocatedatthebottomoftheuppertank,intothelowertank.Flowfromthelowertankflowsintothemainwaterreservoir.Ineachoneofthetwotanks,liquidiswithdrawnfromthebottomthroughanoutfloworifice.Theoutletpressureisatmospheric.Inordertointroduceadisturbanceflowtheuppertankisalsoequippedwithadraintapsothatwhenopen,flowcanbedraindirectlyintothewaterreservoir.Foreachwaterstankwecanseeastaffgaugeattachbesidethetanktodisplaytherealtimewaterlevel.TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevelandgivefeedbacksignal.
3.2Componentnomenclature
Coupled-TankOverFrame
UpperTank
LowerTank
MainWaterBasin
Pump
FlexibleTubing
Quick-ConnectInletOrificeOut1
Quick-ConnectInletOrificeOut2
Quick-ConnectOut1CouplingAndHose
Quick-ConnectOut2CouplingAndHose
SmallOutletInsert
MediumOutletInsert
LargeOutletInsert
PlainOutletInsert
DisturbanceTap
FlowSplitter
PressureSensor
Figure8.Coupled-tankComponent[1]
CalibrationAndSignalConditioningCircuitBoard
PumpMotor4-PinDINConnector
PressureSensorCable6-Pin-MiniDINConnector
TankLevelScale
3.3componentdescription
3.3.1Overallframeandwatertanks
Thecoupled-tankoverallframeandwatertanksaremadeofPlexiglas.Thewatertankshaveuniformcrosssection.[1]
Description
Value
Unit
Overallframeheight
0.915
m
Overallframewidth
0.305
m
Overallframedepth
0.305
m
Form1
3.3.2Pump
TheCoupled-tankpumpisagearpumpcomposedofa12VoltDCmotorwithheatradiatingfins.[1]
3.3.3Pressuresensor
TwopressuresensorsareinstalledonthebottomofeachwatertanksinordertomonitorReal-timewaterlevel.Thesensoroutputvoltageincreasesproportionallytotheappliedpressure.ItsoutmeasurementisprocessedthroughaSignalConditioningBoardandmadeavailableas0to5VDCsignal.
3.4Coupled-tankmodelparameters
Symbol
Description
Value
Unit
Kp
PumpFlowConstant
3.3
cm3/S/V
Vp_max
P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人房產(chǎn)抵押權(quán)抵押權(quán)轉(zhuǎn)讓合同3篇
- 2025年度個(gè)人貸款擔(dān)保轉(zhuǎn)讓合同4篇
- 2025版住宅室內(nèi)精裝修與裝飾工程施工合同5篇
- 人類的起源和發(fā)展課件2
- 出租車行業(yè)環(huán)保措施考核試卷
- 團(tuán)隊(duì)建設(shè)力量培養(yǎng)項(xiàng)目計(jì)劃書(shū)考核試卷
- 印刷業(yè)科技創(chuàng)新與成果轉(zhuǎn)化考核試卷
- 二零二五年度藝術(shù)品交易居間代理合同樣本3篇
- 2025年創(chuàng)業(yè)創(chuàng)新貸款協(xié)議
- 2025年合作知名作者的高需求小說(shuō)電子書(shū)協(xié)議
- 廣東省佛山市2025屆高三高中教學(xué)質(zhì)量檢測(cè) (一)化學(xué)試題(含答案)
- 人教版【初中數(shù)學(xué)】知識(shí)點(diǎn)總結(jié)-全面+九年級(jí)上冊(cè)數(shù)學(xué)全冊(cè)教案
- 2024年全國(guó)體育單招英語(yǔ)考卷和答案
- 食品安全管理制度可打印【7】
- 2024年九年級(jí)語(yǔ)文中考名著閱讀《儒林外史》考前練附答案
- 抖音麗人行業(yè)短視頻直播項(xiàng)目運(yùn)營(yíng)策劃方案
- 2024年江蘇揚(yáng)州市邗城文化旅游發(fā)展有限公司招聘筆試參考題庫(kù)含答案解析
- 小學(xué)六年級(jí)數(shù)學(xué)100道題解分?jǐn)?shù)方程
- 社區(qū)獲得性肺炎護(hù)理查房?jī)?nèi)科
- 淺談提高中學(xué)生歷史學(xué)習(xí)興趣的策略
- 項(xiàng)目管理實(shí)施規(guī)劃-無(wú)錫萬(wàn)象城
評(píng)論
0/150
提交評(píng)論