版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MasterPlanPart3SustainableEnergyforAllofEarthMasterPlanPart3–SustainableEnergyforAllofEarth每日免費獲取報告1、每日微信群內(nèi)分享7+最新重磅報告;2、每日分享當日華爾街日報、金融時報;3、每周分享經(jīng)濟學人4、行研報告均為公開版,權(quán)利歸原作者所有,起點財經(jīng)僅分發(fā)做內(nèi)部學習。掃一掃二維碼關(guān)注公號回復:研究報告加入“起點財經(jīng)”微信群。。TableofContentsExecutiveSummary0304TheCurrentEnergyEconomyisWastefulThePlantoEliminateFossilFuels0505050709121.RepowertheExistingGridwithRenewables2.SwitchtoElectricVehicles3.SwitchtoHeatPumpsinResidential,Business&Industry4.ElectrifyHighTemperatureHeatDeliveryandHydrogen5.SustainablyFuelPlanes&Boats6.ManufacturetheSustainableEnergyEconomy12ModelingTheFullySustainableEnergyEconomy131819??EnergyStorageTechnologiesEvaluatedGenerationTechnologiesEvaluatedModelResults202021???USOnlyModelResults–MeetingNewElectri?cationDemandWorldModelResults–MeetingNewElectri?cationDemandBatteriesforTransportation22222324??VehiclesShipsandPlanes?WorldModelResults–Electri?cation&BatteriesforTransportationInvestmentRequiredLandAreaRequiredMaterialsRequiredConclusion26303137Appendix383839??Appendix:Generationandstorageallocationtoend-usesAppendix:BuildtheSustainableEnergyEconomy–EnergyIntensityPublishedonApril5,2023AcknowledgementsTeslaContributorsFelixMaireMatthewFoxMarkSimonsTurnerCaldwellAlexYooTeslaAdvisorsDrewBaglinoRohanMaWeappreciatethemanypriorstudiesthathavepushedthetopicofasustainableenergyeconomyforward,theworkoftheInternationalEnergyAgency(IEA),U.S.EnergyInformationAdministration(EIA),U.S.DepartmentofEnergyNationalLaboratories,andtheinputfromvariousnon-Teslaa?liatedadvisors.VineetMehtaEliahGilfenbaumAndrewUlvestad02MasterPlanPart3–SustainableEnergyforAllofEarthExecutiveSummaryOnMarch1,2023,TeslapresentedMasterPlanPart3–aproposedpathtoreachasustainableglobalenergyeconomythroughend-useelectri?cationandsustainableelectricitygenerationandstorage.Thispaperoutlinestheassumptions,sourcesandcalculationsbehindthatproposal.Inputandconversationarewelcome.Theanalysishasthreemaincomponents:ElectricityDemandElectricitySupplyMaterialFeasibility&InvestmentDeterminethefeasibilityofmaterialneedsfortheelectriceconomyandmanufacturinginvestmentnecessarytoenableit.Forecasttheelectricitydemandofafullyelectri?edeconomythatmeetsglobalenergyneedswithoutfossilfuels.Constructaleast-costportfolioofelectricitygenerationandstorageresourcesthatsatis?eshourlyelectricitydemand.Figure1:ProcessoverviewThispaper?ndsasustainableenergyeconomyistechnicallyfeasibleandrequireslessinvestmentandlessmaterialextractionthancontinuingtoday’sunsustainableenergyeconomy.Whilemanypriorstudieshavecometoasimilarconclusion,thisstudyseekstopushthethinkingforwardrelatedtomaterialintensity,manufacturingcapacity,andmanufacturinginvestmentrequiredforatransitionacrossallenergysectorsworldwide.240TWh30TW$10T1/2StorageRenewablePowerManufacturingInvestmentTheEnergyRequired0.21%10%ZEROLandAreaRequired2022WorldGDPInsurmountableResourceChallengesFigure2:EstimatedResources&InvestmentsRequiredforMasterPlan303MasterPlanPart3–SustainableEnergyforAllofEarthTheCurrentEnergyEconomyisWastefulAccordingtotheInternationalEnergyAgency(IEA)2019WorldEnergyBalances,theglobalprimaryenergysupplyis165PWh/year,andtotalfossilfuelsupplyis134PWh/year1ab.37%(61PWh)isconsumedbeforemakingittotheendconsumer.Thisincludesthefossilfuelindustries’self-consumptionduringextraction/re?ning,andtransformationlossesduringelectricitygeneration.Another27%(44PWh)islostbyine?cientend-usessuchasinternalcombustionenginevehiclesandnaturalgasfurnaces.Intotal,only36%(59PWh)oftheprimaryenergysupplyproducesusefulworkorheatfortheeconomy.AnalysisfromLawrenceLivermoreNationalLabshowssimilarlevelsofine?ciencyfortheglobalandUSenergysupply2,3.Today’sEnergyEconomy(PWh/year)Figure3:GlobalEnergyFlowbySector,IEA&TeslaanalysisaThe2021and2022IEAWorldEnergyBalanceswerenotcompleteatthetimeofthiswork,andthe2020datasetshowedadecreaseinenergyconsumptionfrom2019,whichlikelywaspandemic-relatedandinconsistentwithenergyconsumptiontrends.bExcludedcertainfuelsuppliesusedfornon-energypurposes,suchasfossilfuelsusedinplasticsmanufacturing.04MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuelsInanelectri?edeconomywithsustainablygeneratedenergy,mostoftheupstreamlossesassociatedwithmining,re?ningandburningfuelstocreateelectricityareeliminated,asarethedownstreamlossesassociatedwithnon-electricend-uses.Someindustrialprocesseswillrequiremoreenergyinput(producinggreenhydrogenforexample),andsomeminingandre?ningactivityneedstoincrease(relatedtometalsforbatteries,solarpanels,windturbines,etc.)Thefollowing6stepsshowtheactionsneededtofullyelectrifytheeconomyandeliminatefossilfueluse.The6stepsdetailtheelectricitydemandassumptionsforthesustainableenergyeconomyandleadstotheelectricitydemandcurvethatismodeled.ModelingwasdoneontheUSenergyeconomyusinghigh-?delitydataavailablefromtheEnergyInformationAdministration(EIA)from2019-2022,andresultswerescaledtoestimateactionsneededfortheglobaleconomyusinga6xscalingfactorcbasedonthe2019energyconsumptionscalarbetweentheU.S.andtheworld,accordingtoIEAEnergyBalances.Thisisasigni?cantsimpli?cationandcouldbeanareaforimprovementinfutureanalyses,asglobalenergydemandsaredi?erentfromtheU.S.intheircompositionandexpectedtoincreaseovertime.ThisanalysiswasconductedontheU.S.duetoavailabilityofhigh-?delityhourlydata.Thisplanconsidersonshore/o?shorewind,solar,existingnuclearandhydroassustainableelectricitygenerationsources,andconsidersexistingbiomassassustainablealthoughitwilllikelybephasedoutovertime.Additionally,thisplandoesnotaddresssequesteringcarbondioxideemittedoverthepastcenturyoffossilfuelcombustion,beyondthedirectaircapturerequiredforsyntheticfuelgeneration;anyfutureimplementationofsuchtechnologieswouldlikelyincreaseglobalenergydemand.01RepowertheExistingGridwithRenewablesTheexistingUShourlyelectricitydemandismodeledasanin?exiblebaselinedemandtakenfromtheEIA.FourUSsub-regions4(Texas,Paci?c,Midwest,Eastern)aremodeledtoaccountforregionalvariationsindemand,renewableresourceavailability,weather,andgridtransmissionconstraints.Thisexistingelectricaldemandisthebaselineloadthatmustbesupportedbysustainablegenerationandstorage.Globally,65PWh/yearofprimaryenergyissuppliedtotheelectricitysector,including46PWh/yearoffossilfuels;howeveronly26PWh/yearofelectricityisproduced,duetoine?cienciestransformingfossilfuelsintoelectricityrenewablypowered,only26PWh/yearofsustainablegenerationwouldberequired.d.Ifthegridwereinstead02SwitchtoElectricVehiclesElectricvehiclesareapproximately4xmoree?cientthaninternalcombustionenginevehiclesduetohigherpowertraine?ciency,regenerativebrakingcapability,andoptimizedplatformdesign.Thisratioholdstrueacrosspassengervehicles,light-dutytrucks,andClass8semisasshownintheTable1.VehicleClassPassengerCarLightTruck/VanClass8TruckICEVehicleAvg24.2MPG5ElectricVehiclesE?ciencyRatio115MPGe(292Wh.mi)e4.8X4.3X4.2X17.5MPG75MPGe(450Wh.mi)22MPGe(1.7kWh.mi)f5.3MPG(diesel)fTable1:ElectricvsInternalCombustionVehicleE?ciencycdefUShourlytimeseriesdatausedasmodelinputsareavailableat/opendata/browser/fordownload.Embeddedinthe26PWh/yearis3.5PWh/yearofusefulheat,mostlyproducedinco-generationpowerstations,whichgenerateheatandpowerelectricity.Tesla’sglobal?eetaverageenergye?ciencyincludingModel3,Y,SandXTesla’sinternalestimatebasedonindustryknowledge05MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuelsAsaspeci?cexample,Tesla’sModel3energyconsumptionis131MPGevs.aToyotaCorollawith34MPG6,7,or3.9xlower,andtheratioincreaseswhenaccountingforupstreamlossessuchastheenergyconsumptionrelatedextractingandre?ningfuel(SeeFigure4).1200driveconsumptionupstreamlosses10008006004002000ToyotaCorollaModel3Figure4:ComparisonTeslaModel3vs.ToyotaCorollaToestablishtheelectricitydemandofanelectri?edtransportationsector,historicalmonthlyUStransportationpetroleumusage,excludingaviationandoceanshipping,foreachsub-regionisscaledbytheEVe?ciencyfactorabove(4x).Tesla’shourby8hourvehicle?eetchargingbehavior,splitbetweenin?exibleand?exibleportions,isassumedastheEVchargingloadcurveinthe100%electri?edtransportationsector.Supercharging,commercialvehiclecharging,andvehicleswith<50%stateofchargeareconsideredin?exibledemand.HomeandworkplaceACchargingare?exibledemandandmodeledwitha72-hourenergyconservationconstraint,modelingthefactthatmostdrivershave?exibilitytochargewhenrenewableresourcesareabundant.Onaverage,Tesladriverschargeonceevery1.7daysfrom60%SOCto90%SOC,soEVshavesu?cientrangerelativetotypicaldailymileagetooptimizetheirchargingaroundrenewablepoweravailabilityprovidedthereischarginginfrastructureatbothhomesandworkplaces.Globalelectri?cationofthetransportationsectoreliminates28PWh/yearoffossilfueluseand,applyingthe4xEVe?ciencyfactor,creates~7PWh/yearofadditionalelectricaldemand.06MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuels03SwitchtoHeatPumpsinResidential,Business&IndustryHeatpumpsmoveheatfromsourcetosinkviathecompression/expansionofanintermediaterefrigerant.Withtheappropriate9selectionofrefrigerants,heatpumptechnologyappliestospaceheating,waterheatingandlaundrydriersinresidentialandcommercialbuildings,inadditiontomanyindustrialprocesses.AirWaterGroundWasteHeatHeatSourceEvaporationExpansionCompressionCondensationHeatSinkAirWaterSteamHeatedMaterialFigure5:HowHeatPumpsWork10Airsourceheatpumpsarethemostsuitabletechnologyforretro?ttinggasfurnacesinexistinghomes,andcandeliver2.8unitsofheatperunitofenergyconsumedbasedonaheatingseasonalperformancefactor(HSPF)of9.5Btu/Wh,atypicale?ciencyratingforheat-pumpstoday11.Gasfurnacescreateheatbyburningnaturalgas.Theyhaveanannualfuelutilizatione?ciency(AFUE)of~90%12.Therefore,heatpumpsuse~3xlessenergythangasfurnaces(2.8/0.9).07MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuels1.4energyconsumptionupstreamlosses1.21.00.20.0GasFurnaceHeatPumpFigure6:E?ciencyimprovementofspaceheatingwithheatpumpvsgasfurnaceResidentialandCommercialSectorsTheEIAprovideshistoricalmonthlyUSnaturalgasusagefortheresidentialandcommercialsectorsineachsub-region.The3x8heat-pumpe?ciencyfactorreducestheenergydemandifallgasappliancesareelectri?ed.Thehourlyloadfactorofbaselineelectricitydemandwasappliedtoestimatethehourlyelectricitydemandvariationfromheatpumps,e?ectivelyascribingheatingdemandtothosehourswhenhomesareactivelybeingheatedorcooled.Insummer,theresidential/commercialdemandpeaksmid-afternoonwhencoolingloadsarehighest,inwinterdemandfollowsthewell-known“duck-curve”whichpeaksinmorning&evening.Globalelectri?cationofresidentialandcommercialapplianceswithheatpumpseliminates18PWh/yearoffossilfuelandcreates6PWh/yearofadditionalelectricaldemand.140SummerWinter13012011010090807005101520TimeofDay[hr]Figure7:Residential&commercialheating&coolingloadfactorvstimeofday08MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuelsIndustrialSectorIndustrialprocessesupto~200C,suchasfood,paper,textileandwoodindustriescanalsobene?tfromthee?ciencygainso?eredbyheatpumps13,althoughheatpumpe?ciencydecreaseswithhighertemperaturedi?erentials.Heatpumpintegrationisnuancedandexacte?cienciesdependheavilyonthetemperatureoftheheatsourcethesystemisdrawingfrom(temperatureriseiskeyindeterminingfactorforheatpumpe?ciency),assuchsimpli?edassumptionsforachievableCOPbytemperaturerangeareused:Temperature/Application0-60CHeatPumpCOP4.03.01.560-100CHeatPump100-200CHeatPumpTable2:AssumedHeatPumpE?ciencyImprovementsbyTemperatureBasedonthetemperaturemake-upofindustrialheataccordingtotheIEAandtheassumedheatpumpe?ciencybytemperatureinTable2,theweightedindustrialheatpumpe?ciencyfactormodeledis2.214,15,16.TheEIAprovideshistoricalmonthlyfossilfuelusagefortheindustrialsectorforeachsub-region8.Allindustrialfossilfueluse,excludingembeddedfossilfuelsinproducts(rubber,lubricants,others)isassumedtobeusedforprocessheat.AccordingtotheIEA,45%ofprocessheatisbelow200C,andwhenelectri?edwithheatpumpsrequires2.2xlessinputenergy16.Theaddedindustrialheat-pumpelectricaldemandwasmodeledasanin?exible,?athourlydemand.Globalelectri?cationofindustrialprocessheat<200Cwithheatpumpseliminates12PWh/yearoffossilfuelsandcreates5PWh/yearofadditionalelectricaldemand.04ElectrifyHighTemperatureHeatDeliveryandHydrogenProductionElectrifyHighHeatIndustrialProcessesIndustrialprocessesthatrequirehightemperatures(>200C),accountfortheremaining55%offossilfueluseandrequirespecialconsideration.Thisincludessteel,chemical,fertilizerandcementproduction,amongothers.Thesehigh-temperatureindustrialprocessescanbeserviceddirectlybyelectricresistanceheating,electricarcfurnacesorbu?eredthroughthermalstoragetotakeadvantageoflow-costrenewableenergywhenitisavailableinexcess.On-sitethermalstoragemaybevaluabletocoste?ectivelyaccelerateindustrialelectri?cation(e.g.,directlyusingthethermalstoragemediaandradiativeheatingelements)17,18.09MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuelsIdentifytheoptimalthermalstoragemediabytemperature/applicationCharging=ThermalBatteryEnergy=massthermal_battery*heatcapacity*?TDischarging=coolingthermalstoragemediabyheatingsomethingelseheatingthermalstoragemediawithelectricity,steam,hotair,etcFigure8:ThermalStorageOverviewDeliveringHeattoHighTemperatureProcessesHotFluidsforDeliveryProcessFluidstobeHeatedWaterMoltenSaltAirWaterEvaporatingMoltenSaltHeatingAirHeatingSteamMoltenSalt(upto550C)HotAir(upto2000+C)Figure9A:ThermalStorage-HeatDeliverytoProcessviaHeatTransferFluidsRadiantHeatDirectlytoProductFigure9B:ThermalStorage-HeatDeliverytoProcessviaDirectRadiantHeatingElectricresistanceheating,andelectricarcfurnaces,havesimilare?ciencytoblastfurnaceheating,thereforewillrequireasimilaramountofrenewableprimaryenergyinput.Thesehigh-temperatureprocessesaremodeledasanin?exible,?atdemand.Thermalstorageismodeledasanenergybu?erforhigh-temperatureprocessheatintheindustrialsector,witharoundtripthermale?ciencyof95%.Inregionswithhighsolarinstalledcapacity,thermalstoragewilltendtochargemiddayanddischargeduringthenightstomeetcontinuous24/7industrialthermalneeds.Figure9showspossibleheatcarriersandillustratesthatseveralmaterialsarecandidatesforprovidingprocessheat>1500C.Globalelectri?cationofindustrialprocessheat>200Celiminates9PWh/yearoffossilfuelfuelsandcreates9PWh/yearofadditionalelectricaldemand,asequalheatdeliverye?ciencyisassumed.10MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuels30002500200015001000500Graphite/CarbonAI203Si02MulliteSteelSandAluminumConcreteMoltenSaltThermalOilWater050010001500200025003000350040004500Speci?cHeat(J/kgK)Figure10:ThermalStorage-HeatStorageMediaNote:Bubblediametersrepresentspeci?cheatoverusablerange.SustainablyProduceHydrogenforSteelandFertilizerTodayhydrogenisproducedfromcoal,oilandnaturalgas,andisusedinthere?ningoffossilfuels(notablydiesel)andinvariousindustrialapplications(includingsteelandfertilizerproduction).Greenhydrogencanbeproducedviatheelectrolysisofwater(highenergyintensity,nocarboncontainingproductsconsumed/produced)orviamethanepyrolysis(lowerenergyintensity,producesasolidcarbon-blackbyproductthatcouldbeconvertedintousefulcarbon-basedproducts)g.Toconservativelyestimateelectricitydemandforgreenhydrogen,theassumptionis:??Nohydrogenwillbeneededforfossilfuelre?ninggoingforwardSteelproductionwillbeconvertedtotheDirectReducedIronprocess,requiringhydrogenasaninput.Hydrogendemandtoreduceironore(assumedtobeFeO)isbasedonthefollowingreductionreaction:34ReductionbyH2??FeO+H=3FeO+HO3422FeO+H=Fe+HO22?AllglobalhydrogenproductionwillcomefromelectrolysisgSustainablesteelproductionmayalsobeperformedthroughmoltenoxideelectrolysis,whichrequiresheatandelectricity,butdoesnotrequirehydrogenasareducingagent,andmaybelessenergyintensive,butthisbene?tisbeyondthescopeoftheanalysis19.11MasterPlanPart3–SustainableEnergyforAllofEarthThePlantoEliminateFossilFuelsThesesimpli?edassumptionsforindustrialdemand,resultinaglobaldemandof150Mt/yrofgreenhydrogen,andsourcingthisfromelectrolysisrequiresanestimated~7.2PWh/yearofsustainablygeneratedelectricityh,20,21.Theelectricaldemandforhydrogenproductionismodeledasa?exibleloadwithannualproductionconstraints,withhydrogenstoragepotentialmodeledintheformofundergroundgasstoragefacilities(likenaturalgasisstoredtoday)withmaximumresourceconstraints.Undergroundgasstoragefacilitiesusedtodayfornaturalgasstoragecanberetro?ttedforhydrogenstorage;themodeledU.S.hydrogenstoragerequires~30%ofexistingU.S.undergroundgasstoragefacilities22,23.Notethatsomestoragefacilities,suchassaltcaverns,arenotevenlygeographicallydispersedwhichmaypresentchallenges,andtheremaybebetteralternativestoragesolutions.Globalsustainablegreenhydrogeneliminates6PWh/yearoffossilfuelenergyuse,and2PWh/yearofnon-energyusei,24.Thefossilfuelsarereplacedby7PWh/yearofadditionalelectricaldemand.05SustainablyFuelPlanes&BoatsBothcontinentalandintercontinentaloceanshippingcanbeelectri?edbyoptimizingdesignspeedandroutestoenablesmallerbatterieswithmorefrequentchargestopsonlongroutes.AccordingtotheIEA,oceanshippingconsumes3.2PWh/yearglobally.Byapplyinganestimated1.5xelectri?catione?ciencyadvantage,afully-electri?edglobalshipping?eetwillconsume2.1PWh/yearofelectricity25.Shortdistance?ightscanalsobeelectri?edthroughoptimizedaircraftdesignand?ighttrajectoryattoday’sbatteryenergydensities26.Longerdistance?ights,estimatedas80%ofairtravelenergyconsumption(85Bgallons/yearofjetfuelglobally),canbepoweredbysyntheticfuelsgeneratedfromexcessrenewableelectricityleveragingtheFischer-Tropschprocess,whichusesamixtureofcarbonmonoxide(CO)andhydrogen(H2)tosynthesizeawidevarietyofliquidhydrocarbons,andhasbeendemonstratedasaviablepathwayforsyntheticjetfuelsynthesis27.Thisrequiresanadditional5PWh/yearofelectricity,with:-H2generatedfromelectrolysis21-CO2capturedviadirectaircapture28,29-COproducedviaelectrolysisofCO2Carbonandhydrogenforsyntheticfuelsmayalsobesourcedfrombiomass.Moree?cientandcost-e?ectivemethodsforsyntheticfuelgenerationmaybecomeavailableintime,andhigherenergydensitybatterieswillenablelonger-distanceaircrafttobeelectri?edthusdecreasingtheneedforsyntheticfuels.Theelectricaldemandforsyntheticfuelproductionwasmodeledasa?exibledemandwithanannualenergyconstraint.Storageofsyntheticfuelispossiblewithconventionalfuelstoragetechnologies,a1:1volumeratioisassumed.Theelectricaldemandforoceanshippingwasmodeledasaconstanthourlydemand.Globalsustainablesyntheticfuelandelectricityforboatsandplaneseliminates7PWh/yearoffossilfuels,andcreates7PWh/yearofadditionalglobalelectricaldemand.06ManufacturetheSustainableEnergyEconomyAdditionalelectricityisrequiredtobuildthegenerationandstorageportfolio-solarpanels,windturbinesandbatteries-requiredforthesustainableenergyeconomy.Thiselectricitydemandwasmodeledasanincremental,in?exible,?athourlydemandintheindustrialsector.MoredetailscanbefoundintheAppendix:BuildtheSustainableEnergyEconomy-EnergyIntensity.hiAdjustedcurrentdemandforhydrogen,removingdemandrelatedtooilre?ning,asthatwillnotberequired.Assumedallofthehydrogenproducedfromcoalandnaturalgastodayisreplaced.Then,theenergyrequiredtoproducethehydrogenfromcoalandnaturalgas,comparedtoelectrolysis,iscalculated.AccordingtotheIEA,85%ofnaturalgasnon-energyconsumptionisconsumedbyfertilizerandmethanolproduction12MasterPlanPart3–SustainableEnergyforAllofEarthModelingtheFullySustainableEnergyEconomyThese6stepscreateaU.S.electricaldemandtobeful?lledwithsustainablegenerationandstorage.Todoso,thegenerationandstorageportfolioisestablishedusinganhourlycost-optimalintegratedcapacityexpansionanddispatchmodelissplitbetweenfoursub-regionsoftheUSwithtransmissionconstraintsmodeledbetweenregionsandrunoverfourweather-years(2019-2022)tocapturearangeofweatherconditions.Interregionaltransmissionlimitsareestimatedbasedonthecurrentj.ThemodelklinecapacityratingsonmajortransmissionpathspublishedbyNorthAmericanElectricityReliabilityCouncil(NERC)RegionalEntities(SERC30,WECC31,ERCOT32).Figure11showsthefullyelectri?edeconomyenergydemandforthefullUS.ModeledRegionsandGridInterconnections24GW37GW28GWPaci?cEasternMidwestTexasMap1:USModeledRegionsandInterconnectionsjConvexoptimizationmodelsthatcandetermineoptimalcapacityexpansionandresourcedispatcharewidelyusedwithintheindustry.Forinstance,byutilitiesorsystemoperatorstoplantheirsystems(e.g.,generationandgridinvestmentsrequiredtomeettheirexpectedload),ortoassesstheimpactofspeci?cenergypoliciesontheenergysystem.Thismodelbuildstheleast-costgenerationandstorageportfoliotomeetdemandeveryhourofthefour-yearperiodanalyzedanddispatchesthatportfolioeveryhourtomeetdemand.Thecapacityexpansionanddispatchdecisionsareoptimizedinonestep,whichensurestheportfolioisoptimalovertheperiodanalyzed,storagevalueisfullyre?ectedandtheimpactofweathervariabilitymodeled.Otheranalysestypicallymodelcapacityexpansionandportfoliodispatchastwoseparatesteps.Thecapacityexpansiondecisionsaremade?rst(e.g.howmuchgenerationandstorageisestimatedtobetheleast-costportfoliooverthetimehorizon),followedbyseparatedispatchmodelingoftheportfoliomix(e.g.howmuchgenerationandstorageshouldbedispatchedineachhourtomeetdemandwithsu?cientoperatingreserves).Thetwo-stageapproachproducespseudo-optimalresults,butallowsmorecomputationallyintensivemodelsateachstage.Themodelisconstrainedtomeeta15%operatingreservemargineveryhourtoensurethisgenerationandstorageportfolioisrobusttoarangeofweatherandsystemconditionsbeyondthoseexplicitelymodeled.k13MasterPlanPart3–SustainableEnergyforAllofEarthModelingtheFullySustainableEnergyEconomyJan‘19Jul‘19Jan‘20Jul‘20Jan‘21Jul‘21Jan‘22Jul‘22Figure11:USFullyElectri?edHourlyDemandNewIndustryIndustrialHeatPumps(<200CSyntheticFuelsGreenHydrogenIndustrialHeat(>200C)Residential&CommercialHeatPumpsElectri?edTransportationExistingElectricalDemand(AllSectors)Windandsolarresourcesforeachregionaremodeledwiththeirrespectivehourlycapacityfactor(i.e.,howmuchelectricityisproducedhourlyperMWofinstalledcapacity),itsinterconnectioncostandthemaximumcapacityavailableforthemodeltobuild.Thewindandsolarhourlycapacityfactorsspeci?ctoeachregionwereestimatedusinghistoricalwind/solargenerationtakenfromEIAineachregion,thuscapturingdi?erencesinresourcepotentialduetoregionalweatherpatternsl,m.CapacityfactorswerescaledtorepresentforwardlookingtrendsbasedontherecentPrincetonNet-ZeroAmericastudy33.Figure11showsthehourlycapacityfactorforwind&solarversustimeforthefullUS.Table3showstheaveragecapacityfactoranddemandforeachregionoftheUS.lEIAdoesnotreporto?shorewindproductionfortheperiodanalyzedgiventhelimitedexistingo?shorewindinstalledcapacity.Theo?shorewindgenerationpro?lewasestimatedbyscalingthehistoricalonshorewindgenerationpro?letotheo?shorewindcapacityfactorestimatedbythePrincetonNet-ZeroAmericastudy.mEachregionismodeledwithtwoonshorewindandtwosolarresourceswithdi?erentcapacityfactor,interconnectioncostandmaximumpotential.Thisaccountsforthefactthatthemosteconomicsitesaretypicallybuilt?rstandsubsequentprojectstypicallyhavelowercapacityfactorsand/orhigherinterconnectioncostastheymaybefartherlocatedfromdemandcentersrequiringmoretransmissionorinlocationswithhighercostland.14MasterPlanPart3–SustainableEnergyforAllofEarthModelingtheFullySustainableEnergyEconomyJan‘19J
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 魯教版地理七年級下冊9.1《自然特征與農(nóng)業(yè)》聽課評課記錄2
- 蘇教版小學數(shù)學三年級上冊口算試題全套
- 蘇教版三年級數(shù)學下冊期末復習口算練習題一
- 中考道德與法治一輪復習八年級下第1單元堅持憲法至上 聽課評課記錄 人教版
- 銷售白酒代理合同范本
- 二零二五年度文化旅游資源開發(fā)項目轉(zhuǎn)讓合同
- 2025年度煙酒零售連鎖加盟經(jīng)營合同
- 2025年度高新技術(shù)企業(yè)研發(fā)人員勞務(wù)外包合同
- 2025年度車輛質(zhì)押擔保與汽車環(huán)保技術(shù)開發(fā)合同
- 二零二五年度醫(yī)療健康產(chǎn)業(yè)股權(quán)轉(zhuǎn)讓協(xié)議工商局審批健康版
- 江蘇省蘇州市2024-2025學年高三上學期1月期末生物試題(有答案)
- 銷售與銷售目標管理制度
- 特殊教育學校2024-2025學年度第二學期教學工作計劃
- 2025年技術(shù)員個人工作計劃例文(四篇)
- 2025年第一次工地開工會議主要議程開工大吉模板
- 第16課抗日戰(zhàn)爭課件-人教版高中歷史必修一
- 對口升學語文模擬試卷(9)-江西省(解析版)
- 無人機運營方案
- 糖尿病高滲昏迷指南
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
評論
0/150
提交評論