版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高等固體物理中科大5關(guān)聯(lián)第1頁/共155頁1.Hartree方程(1928)連乘積形式:按變分原理,的選取E達到極小正交歸一條件單電子方程第2頁/共155頁動能原子核對電子形成的勢能其余N-1個電子對j電子的庫侖作用能自洽求解,H2,He計算與實驗相符。26個電子的Fe原子,運算要涉及1076個數(shù),對稱簡化1053個整個太陽系沒有足夠物質(zhì)打印這個數(shù)據(jù)表!2.凝膠模型(jelliummodel)為突出探討相互作用電子系統(tǒng)的哪些特征是區(qū)別于不計其相互作用者,可人為地簡化假定電子是沉浸在空間密度持恒的正電荷背景之中(不考慮離子的周期性)。正電荷的作用體現(xiàn)于在相互作用電子體系的Hamiltonian中出現(xiàn)一個維持系統(tǒng)聚集的附加項金屬體系,設(shè)電子波函數(shù):第3頁/共155頁Hartree方程中的勢:第二項是全部電子在r處形成的勢,與相抵消第三項是須扣除的自作用,與j有關(guān),但如取r為計算原點:所以對凝膠模型,Hartree方程:相互作用→沒有相互作用電子+正電荷背景→自由電子氣第4頁/共155頁3.Hartree-Fock方程(1930)Hartree方程不滿足Pauli不相容原理電子:費米子單電子波函數(shù)f:→N電子體系的總波函數(shù):
不涉及自旋-軌道耦合時:N電子體系能量期待值:1.第二項j,j'可以相等,自相互作用2.自相互作用嚴格相消(通過第二,三項)3.第三項為交換項,同自旋電子第5頁/共155頁通過變分:么正變換:單電子方程:與Hartree方程的差別:第三項對全體電子,第四項新增,交換作用項。求和只涉及與j態(tài)自旋平行的j’態(tài),是電子服從Fermi統(tǒng)計的反映。4.Koopmann定理(1934)單電子軌道能量等于N電子體系從第j個軌道上取走一個電子并保持N-1個電子狀態(tài)不不變的總能變化值。第6頁/共155頁推廣:系統(tǒng)中一個電子由狀態(tài)j轉(zhuǎn)移到態(tài)i而引起系統(tǒng)能量的變化5.交換空穴(Fermihole)
將H-F方程改寫為:其中:第7頁/共155頁定性討論:假設(shè)Fermihole:與某電子自旋相同的其余鄰近電子在圍繞該電子形成總量為1的密度虧欠域第8頁/共155頁energyasafunctionoftheoneelectrondensity,nuclear-electronattraction,electron-electronrepulsionThomas-FermiapproximationforthekineticenergySlaterapproximationfortheexchangeenergy6.密度泛函理論(Densityfunctionaltheory)
(1)Thomas-Fermi-DiracModel第9頁/共155頁(2)TheHohenberg-KohnTheorem
propertiesareuniquelydeterminedbytheground-stateelectron
In1964,HohenbergandKohnprovedthatmolecularenergy,wavefunction
andallothermolecularelectronic
probabilitydensity
namely,Phys.Rev.136,13864(1964)
.”Densityfunctionaltheory(DFT)attemptstoandotherground-statemolecularproperties
fromtheground-stateelectrondensity
“Formoleculeswitha
nondegenerate
groundstate,theground-state
calculate
第10頁/共155頁Proof:TheelectronicHamiltonianisitisproduced
bychargesexternaltothesystemofelectrons.InDFT,
iscalledtheexternalpotentialactingonelectroni,sinceOncetheexternalpotential
theelectronicwavefunctionsandallowedenergiesofthemoleculeare
andthenumberofelectronsnarespecified,
determinedasthesolutionsoftheelectronicSchr?dingerequation.
第11頁/共155頁Nowweneedtoprovethattheground-stateelectronprobabilitydensitythenumberofelectrons.
theexternalpotential(exceptforanarbitraryadditiveconstant)
a)Sincedeterminesthenumberofelectrons.b)Toseethatdeterminestheexternalpotential,wesupposethatthisisfalseandthattherearetwoexternalpotentialsand(differingbymorethanaconstant)thateachgiveriseto
thesameground-stateelectrondensity.determines第12頁/共155頁theexactground-statewavefunctionandenergyoftheexactground-statewavefunctionandenergyofLetSinceanddifferbymorethanaconstant,andmustbe
differentfunctions.第13頁/共155頁Proof:Assumethusthuswhichcontradictsthegiveninformation.function,theexactground-statewavefunction
stateenergy
foragivenHamiltonianIfthegroundstateisnondegenerate,thenthereisonlyonenormalizedthatgivestheexactground第14頁/共155頁Accordingtothevariationtheorem,supposethatIfthenisanynormalizedwell-behavedtrialvariationfunction.
NowuseasatrialfunctionwiththeHamiltonianthenSubstitutinggives第15頁/共155頁Letbeafunctionofthespatialcoordinatesofelectroni,thenUsingtheaboveresult,wegetSimilarly,ifwegothroughthesamereasoning
withaandbinterchanged,weget第16頁/共155頁Byhypothesis,thetwodifferentwavefunctionsgivethesameelectron.Puttingandaddingtheabovetwoinequalitiesdensity:
yieldpotentialscouldproducethesameground-stateelectrondensitymustbefalse.
energy)
andalsodeterminesthenumberofelectrons.Thisresultisfalse,soourinitialassumptionthattwodifferentexternalpotential(towithinanadditiveconstantthat
simplyaffectsthezerolevel
ofHence,the
ground-stateelectronprobabilitydensity
determinestheexternal第17頁/共155頁probabilitydensityandotherproperties”emphasizesthedependenceoftheexternalpotential
differs
fordifferentmolecules.“Forsystemswithanondegenerategroundstate,theground-stateelectrondeterminestheground-statewavefunctionandenergy,,whichHowever,thefunctionalsareunknown.isalsowrittenasThefunctionalindependentoftheexternalonispotential.第18頁/共155頁(3)TheHohenberg-kohnvariationaltheorem“Foreverytrialdensityfunctionthatsatisfiesandforall,thefollowinginequalityholds:,isthetrueground–stateenergy.”Proof:LetsatisfythatandHohenberg-Kohntheorem,determinestheexternalpotential
andthisinturndeterminesthewavefunctiondensity
.Bythe,thatcorrespondstothe
.where第19頁/共155頁withHamiltonian.AccordingtothevariationtheoremLetususethewavefunctionasatrialvariationfunctionforthe
moleculeSincethelefthandsideofthisinequalitycanberewrittenasOnegetsstates.Subsequently,Levyprovedthetheoremsfordegenerategroundstates.
HohenbergandKohnprovedtheirtheoremsonlyfornondegenerateground第20頁/共155頁(4)TheKohn-Shammethod
Ifweknowtheground-stateelectrondensity
molecularpropertiesfromfunction.,theHohenberg-Kohntheoremtellsusthatitispossibleinprincipletocalculatealltheground-state,withouthavingtofindthemolecularwave
1965,KohnandShamdevisedapracticalmethodforfinding
andforfinding
from.[Phys.Rev.,140,A1133(1965)].Theirmethod
iscapable,inprinciple,ofyieldingexactresults,butbecausetheequationsof
theKohn-Sham(KS)methodcontainanunknownfunctionalthatmustbeapproximated,theKSformationofDFTyield
approximateresults.沈呂九第21頁/共155頁electronsthateachexperiencethesameexternalpotential
theground-stateelectronprobabilitydensity
equaltotheexactofthemoleculeweareinterestedin:.KohnandShamconsideredafictitiousreferencesystemsofnnoninteractingthatmakesofthereferencesystemSincetheelectronsdonot
interactwithoneanotherinthereferencesystem,theHamiltonianofthereferencesystemiswhereistheone-electronKohn-ShamHamiltonian.
第22頁/共155頁Thus,theground-statewavefunctionofthereferencesystemis:isaspinfunctionorbitalenergies.areKohn-ShamForconvenience,thezerosubscriptonisomittedhereafter.Defineasfollows:ground-state
electronickineticenergysystemofnoninteractingelectrons.(either)isthedifferenceintheaveragebetweenthemoleculeand
thereference
Thequantityrepulsionenergy.units)
for
theelectrostaticinterelectronicistheclassicalexpression(inatomic第23頁/共155頁RememberthatWiththeabovedefinitions,
canbewrittenasDefinetheexchange-correlationenergyfunctionalbyNowwehaveside
are
easytoevaluatefromgetagoodapproximationto
totheground-stateenergy.
Thefourthquantity
accurately.
ThekeytoaccurateKSDFT
calculationofmolecular
propertiesisto
Thefirstthreetermsontherightisarelativelysmallterm,butisnoteasytoevaluate
andtheymakethe
maincontributions第24頁/共155頁Thusbecomes.Nowweneedexplicitequationstofindtheground-stateelectrondensity.sameelectrondensityasthatinthegroundstateofthemolecule:isreadilyprovedthatSincethefictitioussystemofnoninteractingelectronsisdefinedtohavethe,it第25頁/共155頁ground-stateenergybyvaryingtominimizethefunctional
canvarytheKSorbitals
minimizetheaboveenergyexpressionsubjecttotheorthonormalityconstraint:TheHohenberg-Kohnvariationaltheoremtellusthatwecanfindthe
soas.Equivalently,insteadofvaryingweThus,theKohn-Shamorbitalsarethosethatwiththeexchange-correlationpotential
definedby(Ifisknown,itsfunctionalderivative
isalsoknown.)第26頁/共155頁CommentsontheDFTmethods:(1)TheKSequationsaresolvedinaself-consistentfashion,liketheHFequations.(2)ThecomputationtimerequiredforaDFTcalculationformallyscalesthe
third
power
ofthenumberofbasisfunctions.(3)ThereisnoDFmolecularwavefunction.(4)TheKSorbitalscanbeusedinqualitativeMOdiscussions,liketheHF
orbitals.(5)Koopmans’theorem
doesn’t
holdhere,exceptTheKSoperatorexchangeoperatorsintheHFoperatorarereplacedbytheeffectsofbothexchangeandelectroncorrelation.isthesameastheHFoperator
exceptthatthe,whichhandles第27頁/共155頁(6)Variousapproximatefunctionals
DFcalculations.Thefunctionalandacorrelation-energyfunctionalAmongvariousCommonlyusedandPW91(PerdewandWang’s1991functional)Lee-Yang-Parr(LYP)functionalareusedinmolecularapproximations,gradient-corrected
exchangeandcorrelationenergyfunctionalsarethemostaccurate.PW86(PerdewandWang’s1986functional)B88(Becke’s1988functional)P86(the
Perdew1986correlationfunctional)
(7)NowadaysKSDFTmethodsaregenerallybelievedtobebetterthantheHFmethod,andinmostcasestheyareevenbetterthanMP2
iswrittenasthesumofanexchange-energyfunctional
第28頁/共155頁XLocalexchangeApproximatedensityfunctionaltheoriesforexchangeandcorrelationX:
LocalexchangefunctionalofthehomogeneouselectrongasLDALocalexchange+localcorrelationGGALocalexchange+localcorrelation+gradientcorrections3rdGenerationoffunctionalsLDA:Localexchangefunctional+localcorrelationfunctionalofthehomogeneouselectrongasGGA:SameasLDA+“non-local”gradientcorrectionstoexchangeandcorrelation3rdGenerationoffunctionals:SameasGGA+instilationof“exact-exchange”and+2ndderivativesofthedensitycorrections第29頁/共155頁TermsinDensityFunctionalsr Localdensityrs Seitzradius=(3/4pr)1/3kF Fermiwavenumber=(3p2r)1/3t Densitygradient=|gradr|/2fksrz Spinpolarization=(rup-rdown)/rf Spinscalingfactor=[(1+z)2/3+(1-z)2/3]/2ks
Thomas-Fermiscreeningwavenumber =(4kF/pa0)1/2s Anotherdensitygradient=|gradr|/2kFrJ.Chem.Phys.,100,1290(1994);PRL77,3865(1996).第30頁/共155頁LocalDensityApproximation第31頁/共155頁LocalSpinDensityApproximation第32頁/共155頁LocalSpinDensityCorrelationFunctionalNotforthefaintofheart:第33頁/共155頁GeneralizedGradientApproximationFunctionals第34頁/共155頁第35頁/共155頁第36頁/共155頁第37頁/共155頁TheNobelPrizeinChemistry1998“forhisdevelopmentofthedensity-functionaltheory"WalterKohn(1923-)第38頁/共155頁第39頁/共155頁第40頁/共155頁第41頁/共155頁第42頁/共155頁第43頁/共155頁第44頁/共155頁第45頁/共155頁第46頁/共155頁第47頁/共155頁第48頁/共155頁第49頁/共155頁第50頁/共155頁第51頁/共155頁第52頁/共155頁第53頁/共155頁第54頁/共155頁第55頁/共155頁第56頁/共155頁第57頁/共155頁第58頁/共155頁第59頁/共155頁第60頁/共155頁第61頁/共155頁第62頁/共155頁第63頁/共155頁第64頁/共155頁第65頁/共155頁第66頁/共155頁第67頁/共155頁第68頁/共155頁第69頁/共155頁第70頁/共155頁第71頁/共155頁第72頁/共155頁第73頁/共155頁第74頁/共155頁第75頁/共155頁5.2費米液體理論費米體系費米溫度:均勻的無相互作用的三維系統(tǒng),費米溫度:費米簡并系統(tǒng):費米子系統(tǒng)的溫度通常運運低于費米溫度
室溫下金屬中的傳導(dǎo)電子費米溫度給出了系統(tǒng)中元激發(fā)存在與否的標度在費米溫度以下,系統(tǒng)的性質(zhì)由數(shù)目有限的低激發(fā)態(tài)決定。有相互作用和無相互作用的簡并費米子系統(tǒng)中,低激發(fā)態(tài)的性質(zhì)具有較強的對應(yīng)性。第76頁/共155頁2.費米液體金屬中電子通常是可遷移的,稱為電子氣,電子動能:電子勢能:在高密度下,電子動能為主,自由電子氣模型是較好的近似。在低密度下,電子之間的勢能或關(guān)聯(lián)變得越來越重要,電子可能由于這種關(guān)聯(lián)作用進入液相甚至晶相。較強關(guān)聯(lián)下,電子系統(tǒng)被稱為電子液體或費米液體或Luttinger液體(1D)第77頁/共155頁相互作用:(1)單電子能級分布變化(勢的變化);(2)電子散射導(dǎo)致某一態(tài)上有限壽命(馳豫時間)3.朗道費米液體理論單電子圖象不是一個正確的出發(fā)點,但只要把電子改成準粒子或準電子,就能描述費米液體。準粒子遵從費米統(tǒng)計,準粒子數(shù)守恒,因而費米面包含的體積不發(fā)生變化。假設(shè)激發(fā)態(tài)用動量表示第78頁/共155頁朗道費米液體理論的適用條件:(1).必須有可明確定義的費米面存在(2).準粒子有足夠長的壽命第79頁/共155頁FermiLiquidTheory第80頁/共155頁第81頁/共155頁第82頁/共155頁第83頁/共155頁第84頁/共155頁第85頁/共155頁第86頁/共155頁SimplePictureforFermiLiquid第87頁/共155頁第88頁/共155頁朗道費米液體理論是處理相互作用費米子體系的唯象理論。在相互作用不是很強時,理論對三維液體正確。二維情況下,多大程度上成立不知道。一維情況下,不成立。luttinger液體一維:低能激發(fā)為自旋為1/2的電中性自旋子和無自旋荷電為的波色子的激發(fā)。非費米液體行為:與費米液體理論預(yù)言相偏離的性質(zhì)第89頁/共155頁THEPHYSICS
OFLUTTINGERLIQUIDSFERMISURFACEHASONLYTWOPOINTSfailureofLandau′sFermiliquidpictureELECTRONSFORMAHARMONICCHAINATLOWENERGIES
Coulomb+PauliinteractionTHELUTTINGERLIQUID:INTERACTINGSYSTEMOF1DELECTRONSATLOWENERGIEScollectiveexcitationsarevibrationalmodes第90頁/共155頁REMARKABLEPROPERTIESAbsenceofelectron-likequasi-particles(onlycollectivebosonicexcitations)Spin-chargeseparation(spinandchargearedecoupledandpropagatewithdifferentvelocities)AbsenceofjumpdiscontinuityinthemomentumdistributionatPower-lawbehaviorofvariouscorrelationfunctionsandtransportquantities.Theexponentdependsontheelectron-electroninteraction第91頁/共155頁OUTLINEWhatisaFermiliquid,andwhytheFermiliquidconceptbreaksin1DTheTomonaga-LuttingermodelTheTL-HamiltoniananditsbosonizationDiagonalizationBosonicfieldsandelectronoperatorsLocaldensityofstatesTunnelingintoaLuttingerliquidLuttingerliquidwithasingleimpurityPhysicalrealizationsofLuttingerliquids第92頁/共155頁LITERATURE
K.FlensbergLecturenotesontheone-dimensionalelectrongasandthetheoryofLuttingerliquids
J.vonDelftandH.SchoellerBosonizationforbeginnersrefermionizationforexperts,cond-mat/9805275J.VoitOne-dimensionalFermiliquids,Rep.Prog.Phys.58,977(1995)H.J.Schulz,G.CunibertiandP.PieriFermiliquidsandLuttingerliquids,cond-mat/9807366第93頁/共155頁SHORTLYABOUTFERMILIQUIDSLandau1957-1959Alsocollectiveexcitationsoccur(e.g.zerosound)atfiniteenergiesLowenergyexcitationsofasystemofinteractingparticlesdescribedintermsof``quasi-particles``(single-particleexcitations)Keypoint:quasi-particleshavesamequantumnumbersasthecorrespondingnon-interactingsystem(adiabaticcontinuity)StartfromappropriatenoninteractingsystemRenormalizationofasetofparameters(e.g.effectivemass)第94頁/共155頁FERMILIQUIDSIIPauliexclusionprinciple
onlystateswithinkTaroundFermisphereavailablequasiparticlestatesnearFermispherescatteronlyweaklyQUASI-PARTICLEPICTUREISAPPLICABLEIN3DEffectofCoulombinteractionistoinduceafinitelife-timet3D第95頁/共155頁FERMILIQUIDSIIIcollectiveexcitations(plasmons)single-particleexcitations12340132DISPERSIONOFEXCITATIONSIN3D0nointeractingT=0FinitejumpinmomentumdistributionZZquasi-particleweight第96頁/共155頁LIFETIMEOF``QUASI-PARTICLES′′scatteringoutofstatekscatteringintostatekspinscreenedCoulombinteractionenergyconservationIn3Danintegrationoverangulardependencetakescareofd-functionFermi′sgoldenruleyieldsforthelifetimetT=0第97頁/共155頁LIFETIMEOF``QUASI-PARTICLES′′IIIn1Dk,k′arescalars.Integrationoverk′yieldsWhataboutthelifetimetin1D?formally,itdivergesatsmallqbutwecaninsertasmallcut-offAtsmallTi.e.,thisratiocannotbemadearbitrarilysmallasin3D第98頁/共155頁BREAKDOWNOFLANDAUTHEORYIN1D12340132DISPERSIONOFEXCITATIONSIN1D
collectiveexcitationsareplasmonswith(RPA)singleparticlegaplessplasmon
COLLECTIVEAND
SINGLE-PARTICLEEXCITATIONNONDISTINCT
nolongerdivergesat(noangularintegrationoverdirectionofasin3D)第99頁/共155頁THETOMONAGA-LUTTINGERMODELEXACTLYSOLVABLEMODELFORINTERACTING1DELECTRONSATLOWENERGIESDispersionrelationislinearizednear(bothcollectiveandsingle-particleexcitationshavelineardispersion)ModelbecomesexactwhenlinearizedbranchesextendfromAssumptions:Onlysmallmomentaexchangesareincluded第100頁/共155頁TOMONAGA-LUTTINGERHAMILTONIANFreepart
freepartinteraction
fermionicannihilation/creationoperatorsIntroducerightmoving
k>0,andleftmovingk<0electrons第101頁/共155頁TLHAMILTONIANIIInteractions
freepartinteractionbackscatteringforwardumklappforward第102頁/共155頁BOSONIZATIONBOSONIZATION:EXPRESSFERMIONICHAMILTONIANINTERMSOFBOSONICOPERATORSconstructbosonicHamiltonianwiththesamespectrun(a)(b)(c)(d)(a)and(b)havesamespectrumbutdifferentgroundstateEXCITEDSTATECANBEWRITTENINTERMSOFCHARGEEXCITATIONS,ORBOSONICELECTRON-HOLEEXCITATIONS第103頁/共155頁STEP1WHICHOPERATORSDOTHEJOB?Introducethedensityoperators(createexcitationofmomentumq)andconsidertheircommutationrelations
nearlybosonic
commutationrelations第104頁/共155頁STEP1:PROOFConsidere.g.algebraoffermionicoperatorsoccupationoperator第105頁/共155頁STEP2ExaminenowBOSONIZEDHAMILTONIANSTATESCREATEDBYAREEIGENSTATESOFWITHENERGY
andinteractions第106頁/共155頁STEP2:PROOFExample:第107頁/共155頁STEP3IntroducethebosonicoperatorsyieldingDIAGONALIZATION第108頁/共155頁SPIN-CHARGESEPARATIONandinteraction(satisfyingSU2symmetry)Ifweincludespin,itgetsslightlymorecomplicated...andinterestingIntroducethespinandchargedensitiesHamiltoniandecoupleintwoindependentspinandchargeparts,withexcitationspropagatingwithvelocities第109頁/共155頁SPACEREPRESENTATIONLongwavelengthlimit(interactions)AppropriatelinearcombinationsP,qofthefieldr(x)canbedefined.ThenonefindswhereLuttingerparameterg<1repulsiveinteraction第110頁/共155頁BOSONICREPRESENTATIONOFYFermionicoperatorWheree.g.Expressyintheformofabosonicdisplacementoperator
B
from
decreasesthenumberofelectronsbyonedisplacesthebosonconfigurationforthatstateBOSONIZATIONIDENTITYifac-numberUladderoperator,qbosonic第111頁/共155頁LOCALDENSITYOFSTATESi)Localdensityofstatesatx=0ndensityofstatesofnon-interactingsystematT=0ii)LocaldensityofstatesattheendofaLuttingerliquidatT=0cut-offenergyG
gammafunction第112頁/共155頁MEASURINGTHELDOS
Measurementofthelocaldensityofstatessystem1system2couplingIVbytunnelingSeee.g.carbonnanotubeexperimentbyBockrathetal.Nature,397,598(1999)第113頁/共155頁MEASURINGTHELDOSIItunnelingrateitojTunnelingcurrentcanbeevaluatedbyuseofFermi′sgoldenruleconstant
LLtoLLLLtometal第114頁/共155頁SINGLEIMPURITYAgaintunnelingcurrentcanbeevaluatedbyuseofFermi′sgoldenrule
endtoendWeaklinkx=0However,nowistunnelingfromtheendofaLLChargedensitywaveispinnedattheimpurity第115頁/共155頁PHYSICALREALIZATIONS
SemiconductingquantumwiresEdgestatesinfractionalquantumHalleffectSingle-walledmetalliccarbonnanotubesEFEnergymetallic1Dconductorwith
2linearbandsk第116頁/共155頁5.3強關(guān)聯(lián)體系窄能帶現(xiàn)象金屬與絕緣體之分:
(1)能帶框架下的區(qū)分:導(dǎo)帶導(dǎo)帶價帶價帶(2)無序引起的Anderson轉(zhuǎn)變:局域態(tài)擴展態(tài)局域態(tài)局域態(tài)局域態(tài)擴展態(tài)EFEF第117頁/共155頁(3)電子間關(guān)聯(lián)導(dǎo)致的Mott金屬-絕緣體轉(zhuǎn)變
(a).MnO:5個3d未滿3d帶;O2-2p是滿帶不與3d能帶重疊能帶論MnO的3d帶將具有金屬導(dǎo)電性實際上,MnO是絕緣體!
(b).ReO3:能帶論絕緣體。實際上是金屬。
(c).一些過渡金屬氧化物當溫度升高時會從絕緣體金屬f電子或d電子波函數(shù)的分布范圍是否和近鄰產(chǎn)生重疊,是電子離域還是局域化的基本判據(jù)l殼層體積與Winger-Seitz元胞體積的比值:4f最小,5f次之,3d,4d,5d…多電子態(tài)的局域化強度的順序:4f>5f>3d>4d>5d______________能帶寬度上升另外,從左往右穿過周期表,部分填充殼層的半徑逐步降低,關(guān)聯(lián)重要性增加。第118頁/共155頁4f,5f元素和3d,4d,5d元素的殼層體積與Winger-Seitz元胞體積的比值YSc第119頁/共155頁Smith和Kmetko準周期表窄帶區(qū)域重費米子強鐵磁性超導(dǎo)體離域性局域性第120頁/共155頁另一類窄帶現(xiàn)象:來自能帶中的近自由電子與溶在晶格中具有3d,5f或4f殼層電子的溶質(zhì)原子相互作用
Friedel與Anderson稀土元素或過渡金屬化合物中的能隙不可能僅用“電荷轉(zhuǎn)移能”、“雜化能隙”、“有效庫侖相關(guān)能”三者之一來描述,而應(yīng)該說三者同時發(fā)揮作用。稀土化合物部分存在混價“mixedvalence”?;靸r的作用導(dǎo)致在Fermi面附近存在非常窄的能帶(部分填充f能帶或f能級),電子可以在4f能級和離域化能帶之間轉(zhuǎn)移,對固體基態(tài)性質(zhì)產(chǎn)生顯著影響。第121頁/共155頁2.窄能帶現(xiàn)象的理論模型選擇經(jīng)驗參數(shù)的模型Hamilton量方法Hubbard模型和Anderson模型第122頁/共155頁TheHubbardModelFromsimplequantummechanicstomany-particleinteractioninsolids-ashortintroduction第123頁/共155頁HistoricalfactsHubbardModelwasfirstintroducedbyJohnHubbardin1963.WhowasHubbard?Hewasbornin1931anddied1980.Theoreticianinsolidstatephysics,fieldofwork:Electroncorrelationinelectrongasandsmallbandsystems.HeworkedattheA.E.R.E.,Harwell,U.K.,andattheIBMResearchLabs,SanJosé,USA.Picturetakenfrom:PhysicsToday,Vol.34,No4,1981第124頁/共155頁What,ingeneral,istheHM?
Hubbardmodelisaquantumtheoreticalmodelformany-particleinteractioninandwithaperiodiclatticeItisbasedonaninteractionHamitonian,sometransformationsandassumptionstobeabletotreatcertainproblems(e.g.magneticbehaviourandphasetransitions)withsolidstatetheory第125頁/共155頁QuantummechanicsBasics:Schr?dingerequation
Expectationvalues
Orthonormalityandclosurerelation
Thebra-ketnotation第126頁/共155頁Basistransformation,mathematicallyAbasistransformationcanbesimplyperformed:Anequationistransformedthesameway:第127頁/共155頁SingleparticleequationsParticleinapotential:
Periodicpotentials:
Solutionforweakcouplingtopotential:
Blochwave第128頁/共155頁SingleparticleequationsDispersionrelationforfreeelectrons(dashedline):DispersionrelationforBlochelectrons(quasi-free)(solidline):Theenergiesat arenolongerdegenerated.Twoeigenenergiesatthosepoints.GraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-Verlag第129頁/共155頁SingleparticleequationsWannierstatesproduceanorthonormalbaseoflocalizedstates;atomicwavefunctionswouldalsobelocalized,buttheyarenotorthonormal.Strongerlatticepotential:couplingtolatticepointsoccurs;amodifiedBlochwaveisused,e.g.WannierstatesresultingfromtheTight-Binding-Model:第130頁/共155頁ComparisonbetweenthetwonewwavefunctionsBlochwavefunctionWannierwavefunction(w-part)GraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-VerlagGraphfromGerdCzycholl,?TheoretischeFestk?rperphysik“,Vieweg-Verlag第131頁/共155頁WavefunctionformanyparticlesWavefunctionisnotsimplytheproductofallsingleparticlewavefunctions;ParticlescannotbedifferedFermionsmustobeyPauliprincipleAnsatz:Slaterdeterminante第132頁/共155頁SecondQuantizationforFermionsCreationanddistructionoperatorscreateordestroystates:第133頁/共155頁SecondQuantizationTheoperatorsfulfillthecommutatorrelation:Thisisamust,otherwiseonewoulddisturbclosurerelationandorthonormalityofwavefunctionsdescribedbysecondquantization第134頁/共155頁HamiltonianformanyparticlesSummationoverallsingleparticlesHamiltonians+interactionHamiltonian:interactionpotentialuistherepulsiveCoulombinteraction第135頁/共155頁Operatorsinsecondquantization第136頁/共155頁Operatorsinsecondquantization第137頁/共155頁HamiltonianinsecondquantizationIstransformedliketheone-particleoperatorA(1)andthetwo-particleoperatorA(2)第138頁/共155頁HamiltonianinsecondquantizationNow:Matrixelement mustbedetermined.Herefore,awavefunctionhastobechosen.Example:Bloch-wave第139頁/共155頁ComingclosertoHubbard...EvaluationofmatrixelementswithWannierwavefunctions:第140頁/共155頁FinalAssumptionsNow:onlydirectneighborinteractions,restrictiontooneband.第141頁/共155頁Meaningofmatrixelementst:singleparticlehoppingU:Hubbard-U,describesonsite-CoulombinteractionV:Nearest-neighbor(density)interactionX:conditionalhoppinginteraction第142頁/共155頁TheHubbardModels
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人雇傭合同協(xié)議模板
- 上海市短期勞務(wù)合同模板
- 個人商業(yè)貸款抵押擔保合同范本
- 個人借款合同、利息減免政策
- 2025年玉米采購與銷售合同
- 個人借款合同示范文本
- 個人農(nóng)田租賃合同樣本
- 中小企業(yè)勞動合同風險防范
- 二手車團購交易及服務(wù)合同2025
- 中小企業(yè)融資合同范例
- 2025民政局離婚協(xié)議書范本(民政局官方)4篇
- 2024年03月四川農(nóng)村商業(yè)聯(lián)合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫附帶答案詳解
- 小學一年級數(shù)學上冊口算練習題總匯
- 睡眠專業(yè)知識培訓課件
- 潤滑油知識-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 臨床思維能力培養(yǎng)
- 人教版高中物理必修第三冊第十章靜電場中的能量10-1電勢能和電勢練習含答案
- 2024年四川省巴中市級事業(yè)單位選聘15人歷年高頻難、易錯點練習500題附帶答案詳解
- 《中國香文化》課件
- 《念奴嬌赤壁懷古》名量教學實錄(特級教師程翔)
評論
0/150
提交評論