版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆廣東省廣州市番禺區(qū)廣博校中考三模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算-5+1的結果為()A.-6 B.-4 C.4 D.62.計算的結果是()A.a2 B.-a2 C.a4 D.-a43.根據如圖所示的程序計算函數y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣74.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數為()A.90° B.120° C.270° D.360°5.據媒體報道,我國最新研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,這個數用科學記數法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1066.圖(1)是一個長為2m,寬為2n(m>n)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n27.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件8.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.129.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,﹣4),頂點C在x軸的負半軸上,函數y=(x<0)的圖象經過菱形OABC中心E點,則k的值為()A.6 B.8 C.10 D.1210.小剛從家去學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學校,小剛從家到學校行駛路程s(單位:m)與時間r(單位:min)之間函數關系的大致圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內,當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結果保留根號).12.有兩個一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個結論中正確的是_____(填寫序號).①如果方程M有兩個不相等的實數根,那么方程N也有兩個不相等的實數根;②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;③如果方程M和方程N有一個相同的根,那么這個根必是x=1;④如果5是方程M的一個根,那么是方程N的一個根.13.如圖,在邊長為1的正方形格點圖中,B、D、E為格點,則∠BAC的正切值為_____.14.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點D,DE是BC的垂直平分線,點E是垂足.若DC=2,AD=1,則BE的長為______.15.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應中線的比為_____.16.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋17.在日本核電站事故期間,我國某監(jiān)測點監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.數據“0.0000872”用科學記數法可表示為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數據:≈2.449,結果保留整數)19.(5分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.20.(8分)如圖,在平面直角坐標系xOy中,已知正比例函數與一次函數的圖像交于點A,(1)求點A的坐標;(2)設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.21.(10分)如圖,△ABC內接于⊙O,CD是⊙O的直徑,AB與CD交于點E,點P是CD延長線上的一點,AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點B等分半圓CD,求DE的長.22.(10分)對于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號,得3x﹣2x﹣2=1②合并同類項,得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過程中的錯誤步驟有(填序號);請寫出正確的解答過程.23.(12分)如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.24.(14分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據有理數的加法法則計算即可.【詳解】解:-5+1=-(5-1)=-1.故選B.【點睛】本題考查了有理數的加法.2、D【解析】
直接利用同底數冪的乘法運算法則計算得出答案.【詳解】解:,故選D.【點睛】此題主要考查了同底數冪的乘法運算,正確掌握運算法則是解題關鍵.3、C【解析】
先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數值,解題的關鍵是掌握函數值的計算方法.4、B【解析】
先根據圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數,再根據三角形內角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【點睛】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.5、C【解析】試題分析:204000米/分,這個數用科學記數法表示2.04×105,故選C.考點:科學記數法—表示較大的數.6、C【解析】
解:由題意可得,正方形的邊長為(m+n),故正方形的面積為(m+n)1.又∵原矩形的面積為4mn,∴中間空的部分的面積=(m+n)1-4mn=(m-n)1.故選C.7、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.8、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.9、B【解析】
根據勾股定理得到OA==5,根據菱形的性質得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結論.【詳解】∵點A的坐標為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征,菱形的性質,勾股定理,正確的識別圖形是解題的關鍵.10、B【解析】【分析】根據小剛行駛的路程與時間的關系,確定出圖象即可.【詳解】小剛從家到學校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數的圖象,認真分析,理解題意,確定出函數圖象是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、100+100【解析】【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,繼而可得∠DCB=60°,從而可得AD=CD=100米,DB=100米,再根據AB=AD+DB計算即可得.【詳解】∵MN//AB,∠MCA=45°,∠NCB=30°,∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,∵CD=100米,∴AD=CD=100米,DB=CD?tan60°=CD=100米,∴AB=AD+DB=100+100(米),故答案為:100+100.【點睛】本題考查了解直角三角形的應用﹣﹣仰角俯角問題,解題的關鍵是借助俯角構造直角三角形并解直角三角形.注意方程思想與數形結合思想的應用.12、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個不相等的實數根,那么方程N也有兩個不相等的實數根,正確;
②∵和符號相同,和符號也相同,
∴如果方程M有兩根符號相同,那么方程N的兩根符號也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯誤;④∵5是方程M的一個根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一個根,正確.
故正確的是①②④.13、【解析】
根據圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網格格點上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點睛】本題考查的知識點是圓周角定理及其推論及解直角三角形,解題的關鍵是熟練的掌握圓周角定理及其推論及解直角三角形.14、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點睛:本題考查的是線段的垂直平分線的性質、角平分線的性質,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.15、3:4【解析】由于相似三角形的相似比等于對應中線的比,∴△ABC與△DEF對應中線的比為3:4故答案為3:4.16、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.17、【解析】
科學記數法的表示形式為ax10n的形式,其中1≤lal<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:0.0000872=故答案為:【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、此時輪船所在的B處與燈塔P的距離是98海里.【解析】【分析】過點P作PC⊥AB,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB的長即可.【詳解】作PC⊥AB于C點,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA?cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此時輪船所在的B處與燈塔P的距離是98海里.【點睛】本題考查了解直角三角形的應用舉例,正確添加輔助線構建直角三角形是解題的關鍵.19、(1)證明見解析;(2)證明見解析;(3)74.【解析】
(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,FC=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.20、(1)A(4,3);(2)28.【解析】
(1)點A是正比例函數與一次函數圖像的交點坐標,把與聯立組成方程組,方程組的解就是點A的橫縱坐標;(2)過點A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點P的橫坐標a表示出點B、C的坐標,利用BC的長求得a值,根據即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點A的坐標為(4,3).(2)過點A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.21、(1)證明見解析;(2);(3);【解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據切線的判斷定理得到結論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設DH=x,則DE=2x,所以然后求出x即可得到DE的長.【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【點睛】本題考查了切線的判定與性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.22、(1)錯誤步驟在第①②步.(2)x=4.【解析】
(1)第①步在去分母的時候,兩邊同乘以6,但是方程右邊沒有乘,另外在去括號時沒有注意到符號的變化,所以出現錯誤;(2)注重改正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七小學學困生幫扶工作實施方案
- 污水管道疏通檢測修復方案
- 新塘鎮(zhèn)中心小學午休管理工作實施方案
- 2023年重慶墊江國有企業(yè)招聘考試真題
- 特異體質學生突發(fā)意外事件應急預案
- 2023年寧波市江北區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)編制工作人員筆試真題
- 2023年達州市達川區(qū)城區(qū)中小學校引進筆試真題
- 監(jiān)理廉潔制度
- 公司年薪制薪酬管理制度
- 防災減災日活動方案
- 化工石油工程項目管道安裝技術教材課件
- 二年級上冊美術課件-10.感覺肌理 |蘇少版 (共14張PPT)
- 輕創(chuàng)業(yè)、贏未來培訓教學課件
- 《鄉(xiāng)村醫(yī)師執(zhí)業(yè)注冊申請表》
- 《合格率》3全國一等獎教學設計
- 三年級檢討書100字(5篇)
- 四年級上冊美術教案-第10課 黑白灰 蘇少版
- 樂山市市中區(qū)2022-2023學年度上期期中調研考試八年級生物試題及答案
- 西藏民歌課件
- 六年級上冊數學課件-《營養(yǎng)含量》(共17張PPT) 北師大版(2014秋)
- 《出塞》優(yōu)秀課件
評論
0/150
提交評論