數(shù)學建模的建立與應用_第1頁
數(shù)學建模的建立與應用_第2頁
數(shù)學建模的建立與應用_第3頁
數(shù)學建模的建立與應用_第4頁
數(shù)學建模的建立與應用_第5頁
已閱讀5頁,還剩68頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第七章線性規(guī)劃模型(móxíng)的建立與應用一、線性規(guī)劃的概念二、線性規(guī)劃三要素三、技術經濟研究中運用線性規(guī)劃方法(fāngfǎ)的特點及局限性四、線性規(guī)劃模型的根本結構五、線性規(guī)劃模型的一般形式六、線性規(guī)劃模型的根本假設

第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理第一頁,共73頁。1線性規(guī)劃是指如何最有效或最正確地謀劃經濟活動。它所研究的問題有兩類:一類是指一定資源的條件下,到達最高產量、最高產值、最大利潤;一類是,任務量一定,如何統(tǒng)籌安排,以最小的消耗取完成這項任務。如最低本錢問題、最小投資、最短時間、最短距離等問題。前者(qiánzhě)是求極大值問題,后者是求極小值問題。總之,線性規(guī)劃是一定限制條件下,求目標函數(shù)極值的問題。

第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理一、線性規(guī)劃(xiànxìnɡɡuīhuá)的概念第二頁,共73頁。2?經濟大詞典?定義線性規(guī)劃(xiànxìnɡɡuīhuá):一種具有確定目標,而實現(xiàn)目標的手段又有一定限制,且目標和手段之間的函數(shù)關系是線性的條件下,從所有可供選擇的方案中求解出最優(yōu)方案的數(shù)學方法。

第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理一、線性規(guī)劃(xiànxìnɡɡuīhuá)的概念第三頁,共73頁。3二、線性規(guī)劃(xiànxìnɡɡuīhuá)三要素1.目標函數(shù)最優(yōu)化——單一目標多重目標問題如何處理?2.實現(xiàn)目標的多種方法假設實現(xiàn)目標只有一種方法不存在規(guī)劃問題。3.生產條件的約束——資源(zīyuán)是有限的資源(zīyuán)無限不存在規(guī)劃問題。第一節(jié)線性規(guī)劃(xiànxìnɡɡuīhuá)模型的根本原理第四頁,共73頁。4三、技術經濟研究中運用線性規(guī)劃方法(fāngfǎ)的特點及局限性

第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理特點:1.可以使研究對象具體化、數(shù)量化??梢詫λ芯康募夹g經濟問題做出明確的結論(jiélùn);4.有一套完整的運算程序第五頁,共73頁。5三、技術經濟(jīngjì)研究中運用線性規(guī)劃方法的特點及局限性

第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理局限性:1.線性規(guī)劃它是以價格不變和技術不變?yōu)榍疤釛l件的,不能處理涉及到時間因素的問題。因此,線性規(guī)劃只能以短期方案為根底(gēndǐ)。2.在生產活動中,投入產出的關系不完全是線性關系,由于在一定的技術條件下,報酬遞減規(guī)律起作用,所以要滿足線性假定是不可能的。在線性規(guī)劃解題中,常常把投入產出的非線性關系轉化為線性關系來處理,以滿足線性的假定性,客觀上產生誤差。3.線性規(guī)劃本身只是一組方程式,并不提供經濟概念,它不能代替人們對現(xiàn)實經濟問題的判斷。第六頁,共73頁。6四、線性規(guī)劃(xiànxìnɡɡuīhuá)模型的根本結構1.決策變量——未知數(shù)。它是通過模型計算來確定的決策因素。又分為實際變量——求解的變量和計算變量,計算變量又分松弛變量〔上限(shàngxiàn)〕和人工變量〔下限〕。2.目標函數(shù)——經濟目標的數(shù)學表達式。目標函數(shù)是求變量的線性函數(shù)的極大值和極小值這樣一個極值問題。3.約束條件——實現(xiàn)經濟目標的制約因素。它包括:生產資源的限制〔客觀約束條件〕、生產數(shù)量、質量要求的限制〔主觀約束條件〕、特定技術要求和非負限制。第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理第七頁,共73頁。7四、線性規(guī)劃模型(móxíng)的根本結構MinZ=10x1+20x2

s.t.x1+x2≥103x1+x2≥15

x1+6x2≥15

x1≥0,x2≥0約束條件目標(mùbiāo)函數(shù)第一節(jié)線性規(guī)劃(xiànxìnɡɡuīhuá)模型的根本原理第八頁,共73頁。8五、線性規(guī)劃模型(móxíng)的一般形式MaxZ=c1x1+c2x2+c3x3+…+cnxna11x1+a12x2+…+a1nxn≤b1 (1)a21x1+a22x2+…+a2nxn≤

b2 (2)……am1x1+am2x2+…+amnxn≤bm (m)x1,x2,…xn≥0第一節(jié)線性規(guī)劃(xiànxìnɡɡuīhuá)模型的根本原理極大值模型(móxíng)第九頁,共73頁。9其簡縮(jiǎnsuō)形式為第一節(jié)線性規(guī)劃模型(móxíng)的根本原理極大值模型(móxíng)第十頁,共73頁。10五、線性規(guī)劃模型的一般(yībān)形式MinZ=c1x1+c2x2+c3x3+…+cnxn

a11x1+a12x2+…+a1nxn≥b1 (1)a21x1+a22x2+…+a2nxn≥b2 (2)……am1x1+am2x2+…+amnxn≥bm (m)

x1,x2,…xn≥0第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理極小值模型(móxíng)第十一頁,共73頁。11其簡縮(jiǎnsuō)形式為第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理極小值模型(móxíng)第十二頁,共73頁。12其簡縮(jiǎnsuō)形式為第一節(jié)線性規(guī)劃模型的根本(gēnběn)原理極大值模型(móxíng)可用向量表示:

C=(c1,c2,……cn)第十三頁,共73頁。13六、線性規(guī)劃(xiànxìnɡɡuīhuá)模型的根本假設1.線性目標函數(shù)和約束條件2.可分性活動對資源的可分性3.可加性活動所耗資源的可加性,資源總需要量為多種活動所需資源數(shù)量的總和。4.明確性目標的明確性5.單一性期望值的單一性6.獨立性變量是獨立的表示各種(ɡèzhǒnɡ)作業(yè)對資源都是互竟關系,沒有互助關系第十四頁,共73頁。14第二節(jié)線性規(guī)劃模型(móxíng)的建立與圖解法求解一、建模二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法第十五頁,共73頁。15一、建模[例1]某飼料公司用甲、乙兩種原料配制飼料,甲乙兩種原料的營養(yǎng)成份及配合飼料中所含各營養(yǎng)成份最低量由表1給出。單位甲、乙原料的價格分別(fēnbié)為10元和20元,求滿足營養(yǎng)需要的飼料最小本錢配方。第十六頁,共73頁。16一、建模設配合飼料中,用甲x1單位,用乙x2單位,那么配合飼料的原料本錢函數(shù),即決策的目標函數(shù)為Z=10x1+20x2??紤]三種營養(yǎng)含量限制(xiànzhì)條件后,可得這一問題的線性規(guī)劃模型如下:MinZ=10x1+20x2x1+x2≥103x1+x2≥15x1+6x2≥15x1≥0,x2≥0第十七頁,共73頁。17一、建模[例2]某農戶方案用12公頃耕地生產玉米,大豆和地瓜,可投入48個勞動日,資金360元。生產玉米1公頃,需6個勞動日,資金36元,可獲凈收入200元;生產1公頃大豆,需6個勞動日,資金24元,可獲凈收入150元;生產1公頃地瓜需2個勞動日,資金18元,可獲凈收入1200元,問怎樣安排才能使總的凈收入最高。設種玉米,大豆和地瓜的數(shù)量分別為x1、x2和x3公頃,根據(jù)(gēnjù)問題建立線性規(guī)劃問題模型如下:第十八頁,共73頁。18一、建模MaxZ=200x1+150x2+100x3

x1+x2+x3≤12 (1)6x1+6x2+2x3≤48 (2)36x1+24x2+18x3≤360 (3)

x1≥0,x2≥0,x3≥0

第十九頁,共73頁。19一、建模[例3]某農戶有耕地20公頃,可采用甲乙兩種種植方式。甲種植方式每公頃需投資280元,每公頃投工6個,可獲收入1000元,乙方式每公頃需投資150元,勞動15個工日,可獲收入1200元,該戶共有可用資金4200元、240個勞開工日。問如何(rúhé)安排甲乙兩種方式的生產,可使總收入最大?解:設甲方式種x1公頃,乙方式種x2公頃,總收入為Z,那么有:第二十頁,共73頁。20一、建模MaxZ=1000x1+1200x2280x1+150x2≤42006x1+15x2≤240x1+x2≤20x1≥0,x2≥0

第二十一頁,共73頁。21二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法〔一〕可行(kěxíng)解〔二〕可行(kěxíng)域〔三〕最優(yōu)解〔四〕最優(yōu)性定理〔五〕最大化問題的圖解法〔六〕最小化問題的圖解法第二十二頁,共73頁。22二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法〔一〕可行解線性規(guī)劃問題的可行解是指,滿足規(guī)劃中所有約束條件及非負約束的決策變量的一組取值,其僅與約束條件有關而與目標函數(shù)值的大小(dàxiǎo)無關?!捕晨尚杏蚩尚杏蚴怯伤锌尚薪鈽嫵傻募?。根據(jù)線性規(guī)劃的根本理論,任一個線性規(guī)劃問題的可行域,都是一個有限或無限的凸多邊形,凸多邊形的每個角,稱為可行域的極點。〔三〕最優(yōu)解線性規(guī)劃的最優(yōu)解是指,使目標函數(shù)值到達最優(yōu)(最大或最小)的可行解。一個線性規(guī)劃問題可以是有解的,也可能是無解的,最優(yōu)解的個數(shù)可能是惟一的,也可能是有無窮多個,即決策變量有許多組不同的取值,都使目標函數(shù)到達同一個最優(yōu)值。第二十三頁,共73頁。23二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法〔四〕最優(yōu)性定理假設一個線性規(guī)劃問題有最優(yōu)解,那么最優(yōu)解一定可以在可行域的某個極點上找到一個最優(yōu)解。同時(tóngshí)仍有可能有其他最優(yōu)解存在,但它們也只可能存在于可行域的其他極點或是邊界上。如果我們的目的是找出一個最優(yōu)解而不是全部最優(yōu)解,這一定理實際上是把尋找的范圍,從可行域中的無窮多個可行點,縮小到可行域的有限幾個極點上。第二十四頁,共73頁。24二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法〔五〕最大化問題的圖解法第一步,找出問題的可行(kěxíng)域第二步,在可行(kěxíng)域中尋求最優(yōu)解,方法有兩種:第二十五頁,共73頁。25二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法

O2040x120ABCD280x1+150x2=42006x1+15x2=240x1+x2=20x2Z=1000x1+1200x2A(0,16)B(6.7,13.3)C(9.2,10.8)D(15,0)ZA=19200ZB=22660ZC=22160ZD=15000第二十六頁,共73頁。26二、線性規(guī)劃(xiànxìnɡɡuīhuá)的求解——圖解法〔五〕最小化問題(wèntí)的圖解法例:MinZ=10x1+20x2s.t.x1+x2≥103x1+x2≥15x1+6x2≥15x1≥0,x2≥0第二十七頁,共73頁。271515105105OABCDx2x1x1+6x2=15可行(kěxíng)域3x1+x2=15x1+x2=1010x1+20x2=0A(0,15)B(2.5,7.5)C(9,1)D(15,0)ZA=300ZB=175ZC=110ZD=150第二十八頁,共73頁。28第三節(jié)單純形法單純形方法是一種較為完善的、步驟化的線性規(guī)劃問題求解方法。它的原理涉及到較多的數(shù)學理論上的推導和證明,我們在此僅介紹這種方法的具體操作步驟及每一步的經濟上的含義(hányì)。為更好地說明問題,我們仍結合實例介紹這種方法第二十九頁,共73頁。29第三節(jié)單純形法一、線性規(guī)劃(xiànxìnɡɡuīhuá)的標準型二、線性規(guī)劃(xiànxìnɡɡuīhuá)問題的解三、單純形法四、單純型表第三十頁,共73頁。30第三節(jié)單純形法一線性規(guī)劃(xiànxìnɡɡuīhuá)的標準型LP目標函數(shù)有的要求實現(xiàn)最大化,有的要求實現(xiàn)最小化,約束條件可以是“<=〞、“>=〞、“=〞,這種多樣性給討論問題(wèntí)帶來不便。為了便于討論,我們規(guī)定線性規(guī)劃問題(wèntí)的標準形式為:MaxZ=c1x1+c2x2+c3x3+…+cnxna11x1+a12x2+…+a1nxn=b1 (1)a21x1+a22x2+…+a2nxn=b2 (2)……am1x1+am2x2+…+amnxn=bm (m)x1,x2,…xn≥0第三十一頁,共73頁。31第三節(jié)單純形法其簡縮(jiǎnsuō)形式為一線性規(guī)劃(xiànxìnɡɡuīhuá)的標準型用向量(xiàngliàng)表示其中C=(c1,c2,……cn)

向量Pj是其對應變量xj的系數(shù)向量。第三十二頁,共73頁。32第三節(jié)單純形法一線性規(guī)劃(xiànxìnɡɡuīhuá)的標準型用矩陣(jǔzhèn)描述

第三十三頁,共73頁。33第三節(jié)單純形法二線性規(guī)劃(xiànxìnɡɡuīhuá)問題的解可行解最優(yōu)解基設A為約束方程組的m×n階系數(shù)矩陣,其秩為m。B是矩陣A中m×m階非奇異子矩陣〔〕,那么(nàme)稱B是線性規(guī)劃問題的一個基。不失一般性可設稱Pj為基向量,與基變量Pj相對(xiāngduì)應的變量為基變量。否那么為非基變量。第三十四頁,共73頁。34為了進一步討論線性規(guī)劃問題的解,我們來研究約束方程組求解的問題。假設方程組系數(shù)矩陣Z的秩為m,因m小于n故它有無窮多個解。假設前m個變量的系數(shù)列向量是線性獨立(dúlì)的,這時線性規(guī)劃模型可寫成:二線性規(guī)劃(xiànxìnɡɡuīhuá)問題的解第三十五頁,共73頁。35或設非基變量(biànliàng)用高斯(ɡāosī)消去法,可求出一個解稱X為根本(gēnběn)解根本可行解滿足非負條件的根本解二線性規(guī)劃問題的解第三十六頁,共73頁。36[例3]某工廠在方案期內安排生產x1x2兩種產品,這些產品分別需要在A、B、C、D四種不同的設備上加工。按工藝(gōngyì)規(guī)定,產品x1和產品x2在各設備上加工的臺時數(shù)見下表。各設備在方案期內有效臺時數(shù)分別是12、8、16和12?!惨慌_設備工作一小時稱為一臺時〕該工廠每生產一件產品x1可得利潤2元,每生產一件產品x2可得利潤3元,問如何安排生產方案,才能得到利潤最多?三單純形法第三十七頁,共73頁。37設備產品ABCDx12140x22204三單純形法第三十八頁,共73頁。38〔一〕求解(qiújiě)過程〔二〕求解(qiújiě)過程小結三單純形法第三十九頁,共73頁。39MaxZ=2x1+3x22x1+2x2≤12

x1+2x2≤84x1

≤16 4x2

≤12

x1≥0,x2≥0引入松弛變量(biànliàng)x3—A設備閑置臺時數(shù)x4—B設備閑置臺時數(shù)x5—C設備閑置臺時數(shù)x6—D設備閑置臺時數(shù)將線性規(guī)劃化為標準型.〔8.1〕三單純形法求解(qiújiě)過程第四十頁,共73頁。40MaxZ=2x1+3x2+x3+x4+x5+x6

2x1+2x2+x3=12

x1+2x2+x4=84x1

+x5=16 4x2

+x6=12

x1≥0,x2≥0,x3≥0,x4≥0,x5≥0,x6≥0〔8.2〕三單純形法求解(qiújiě)過程第四十一頁,共73頁。41x3,x4,x5,x6的系數(shù)(xìshù)列向量p3,p4,p5,p6是線性獨立的,這些列向量構成一個基系數(shù)(xìshù)矩陣三單純形法求解(qiújiě)過程第四十二頁,共73頁。42x3=12-2x1-2x2 x4=8-x1-2x2x5=16-4x1 x6=12-4x2把上式帶入目標函數(shù)得到Z=0+2x1+3x2〔8.4〕當非基變量(biànliàng)x1=x2=0,便得z=0,這時得到一個根本可行解X(0)對應于B的變量x3,x4,x5,x6為基變量,從標準型我們(wǒmen)可以得到:〔8.3〕三單純形法求解(qiújiě)過程第四十三頁,共73頁。43這個根本可行解表示:工廠(gōngchǎng)沒有安排生產產品;設備的有效臺時數(shù)沒有被利用,所以構成的利潤為0。從分析目標函數(shù)的表達式可以看到,非基變量x1,x2系數(shù)都是正數(shù),假設將非基變量換成基變量,目標函數(shù)就會增加。所以,只要在目標函數(shù)的表達式中還存在正系數(shù)的非基變量,這表示目標函數(shù)還有增加的可能,就需要將非基變量換成基變量。一般選擇(xuǎnzé)正系數(shù)最大的那個非基變量。可按以下方法來確定換出變量。三單純形法求解(qiújiě)過程第四十四頁,共73頁。44現(xiàn)分析〔8.4〕,將x2定為換入變量后,必須從x3,x4,x5,x6中換出一個,并保證其余的都是非負,即x3,x4,x5,x6≥0當x1=0,由〔8.3〕式得到(dédào)x3=12-2x2≥0 x4=8-2x2 ≥0〔8.5〕x5=16 ≥0 x6=12-4x2≥0從〔8.5〕式中可以看出,只有選擇Z=0+2x1+3x2〔8.4〕時,才能(cáinéng)使〔8.5〕式成立。因當x2=3時,基變量x6=0這就決定(juédìng)用x2去替換x6。三單純形法求解過程第四十五頁,共73頁。45為了求得以x3,x4,x5,x2為基變量的一個根本可行解和進一步分析問題,需將〔8.5〕中的x2位置與x6的位置兌換。得到x3+2x2=12-2x1 x4+2x2=8-x1〔8.6〕x5=16-4x1 4x2=12-x6用高斯消去法,將〔8.6〕式中的x2的系數(shù)(xìshù)列向量變?yōu)閱挝涣邢蛄俊3=6-2x1+1/2x6 x4=2-x1+1/2x6〔8.7〕x5=16-4x1 x2=3-1/4x6三單純形法求解(qiújiě)過程第四十六頁,共73頁。46再將〔8.7〕代入〔8.1〕目標函數(shù)得到(dédào):Z=9+2x1-3/4x6〔8.8〕當非基變量x1=x6=0,得到(dédào)Z=9,并得到(dédào)另一個根本可行解三單純形法求解(qiújiě)過程第四十七頁,共73頁。47從目標函數(shù)的表達式〔8.8〕中可看到,非基變量x1的系數(shù)是正的,說明目標函數(shù)值還可以增大,X(1)不一定是最優(yōu)解。于是用上述方法,確定換入換出變量,繼續(xù)迭代,再得到另一個根本可行解X(2)再經過(jīngguò)一次迭代,又得到一個根本可行解這時得到的目標函數(shù)的表達式是:Zx4-0.125x5目標函數(shù)值到達最大,X(3)是線性規(guī)劃的最優(yōu)解。三單純形法求解(qiújiě)過程第四十八頁,共73頁。481.人造基、初始根本(gēnběn)可行解2.最優(yōu)性檢驗三單純形法求解(qiújiě)過程小結第四十九頁,共73頁。491.人造基、初始根本可行(kěxíng)解Pj中能直接觀察到存在m個線性獨立的單位向量,經過重新安排次序便得到一個可行(kěxíng)基三單純形法求解過程(guòchéng)小結第五十頁,共73頁。501.人造基、初始根本可行解1.2“≤〞標準化的方法,引入非負的松弛變量重新對xj及aij編號,經整理那么可得到以下(yǐxià)方程MaxZ=c1x1+c2x2+c3x3+…+cnxnx1+a1m+1xm+1+a1m+2xm+2+…+a1nxn=b1x2+a2m+1xm+1+a2m+2xm+2+…+a2nxn=b2 〔8.9〕………xm+amm+1xm+1+amm+2xm+2+…+amnxn=bm x1,x2,…xn≥0顯然得到一個單位陣

三單純形法求解過程(guòchéng)小結第五十一頁,共73頁。51我們就將B作為可行基。將〔8.9〕每個等式進行(jìnxíng)移項得x1=b1-a1m+1xm+1-a1m+2xm+2-…-a1nxnx2=b2-a2m+1xm+1-a2m+2xm+2-…-a2nxn〔8.10〕……xm=bm-amm+1xm+1-amm+2xm+2-…-amnxn x1,x2,…xn≥0令xm+1=xm+2=……=xn=0,由〔8.10〕可得xi=bi(I=1,2,……m)得到一個初始根本可行解三單純形法求解過程(guòchéng)小結第五十二頁,共73頁。52得到初始可行解后,要檢驗一下是否是最優(yōu)解,如果是,那么停止迭代,如果不是,那么繼續(xù)(jìxù)迭代……。但每次迭代后都要檢驗一下是否是最優(yōu)解,為此需要建立一個判別準那么。一般情況下,經過迭代后式變成〔i=1,2,3,……,m〕將上式代入目標函數(shù),整理后得三單純形法求解過程(guòchéng)小結第五十三頁,共73頁。53j=m+1,……,n三單純形法求解(qiújiě)過程小結第五十四頁,共73頁。542.1最優(yōu)解判別定理:假設為對應于B的根本可行解,且對于一切(yīqiè)j=m+1,……,n有,那么X〔0〕為最優(yōu)解。無有限最優(yōu)解判別定理:假設為對應于B的根本可行解,有一個并且對于一切(yīqiè)i=1,2,3,……,m有,那么該線性規(guī)劃沒有有限最優(yōu)解。2.3換出變量確實定,為換入變量。三單純形法求解(qiújiě)過程小結第五十五頁,共73頁。55三單純形表例1第五十六頁,共73頁。56例1第五十七頁,共73頁。57例1第五十八頁,共73頁。58例1第五十九頁,共73頁。59例2第六十頁,共73頁。60例2第六十一頁,共73頁。61例2第六十二頁,共73頁。62目標函數(shù)(hánshù)系數(shù)靈敏度分析右邊值靈敏度分析第四節(jié)靈敏度分析(fēnxī)第六十三頁,共73頁。63目標函數(shù)(hánshù)系數(shù)靈敏度分析最優(yōu)解不變的條件(tiáojiàn)下,允許C的變化范圍,最優(yōu)解不變的前提是σj≤0假設玉米價值系數(shù)C1發(fā)生了變化,其變化量為△1-50≤△1≤100△1≥-50△1≤100△1≥-100-50-△1≤0-50+0.5△1≤0-25-0.25△1≤0第六十四頁,共73頁。64目標函數(shù)系數(shù)(xìshù)靈敏度分析假設大豆價值系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論