版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第《任意角三角函數(shù)》說課稿《任意角三角函數(shù)》說課稿1各位同仁,各位專家:
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊第1。2節(jié)
先對教材進(jìn)行分析
教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。
地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。
教學(xué)重點:任意角三角函數(shù)的定義
教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力
1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行
針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下
知識目標(biāo):
(1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,
能力目標(biāo):
(1)理解并掌握任意角的三角函數(shù)的定義;
(2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);
(3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。
德育目標(biāo):
(1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
(1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
(1)提高直觀性增強(qiáng)趣味性。
教學(xué)過程分析
總體來說,由舊及新,由易及難,
逐步加強(qiáng),逐步推進(jìn)
先由初中的直角三角形中銳角三角函數(shù)的定義
過度到直角坐標(biāo)系中銳角三角函數(shù)的定義
再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義
給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。
具體教學(xué)過程安排
引入:復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里,那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示,從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了
從而得到
知識點一:任意一個角的三角函數(shù)的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A,這三個比值的大小和P點在角的終邊上的位置無關(guān)。
精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義
例1已知角A的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值
(此題由學(xué)生自己分析獨立動手完成)
例題變式1,已知角A的大小是30度,由定義求角A的三個三角函數(shù)值
結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),
提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?
從而引出函數(shù)極其定義域
由學(xué)生分析討論,得出結(jié)論
知識點二:三個三角函數(shù)的定義域
同時教師強(qiáng)調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)
例題變式2,已知角A的終邊經(jīng)過P(—2a,—3a)(a不為0),求角A的三個三角函數(shù)值
解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論,讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點
知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系
由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且sinA=0。2求cosA,tanA
求cosA,tanA
綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)
拓展,如果不限制A的象限呢,可以留作課外探討
小結(jié)回顧課堂內(nèi)容
課堂作業(yè)和課外作業(yè)以加強(qiáng)知識的記憶和理解
課堂作業(yè)P161,2,4
(學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
必作P231(2),5(2),6(2)(4)選作P233,4
板書設(shè)計(見PPT)《任意角三角函數(shù)》說課稿2
1、教學(xué)目標(biāo):
一、借助單位圓理解任意角的三角函數(shù)的定義。
二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。
三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。
四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。
2、教學(xué)重點與難點:
重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。
難點:任意角的三角函數(shù)概念的建構(gòu)過程。
授課過程:
一、引入
在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。
二、創(chuàng)設(shè)情境
三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時,我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進(jìn)行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?
學(xué)生情況估計:學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標(biāo)。
問題:
1、銳角三角函數(shù)能否表示成第二種比值方式?
2、點P能否取在終邊上的其它位置?為什么?
3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。
練習(xí):計算的各三角函數(shù)值。
三、任意角的三角函數(shù)的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?
嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?
評價學(xué)生給出的定義。給出任意角三角函數(shù)的定義。
四、解析任意角三角函數(shù)的定義
三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)
對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。
五、三角函數(shù)的應(yīng)用。
1、已知角,求a的三角函數(shù)值。
2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。
以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時,老師提出問題:
1、已知角如何求三角函數(shù)值?
2、利用角a的終邊上任意一點的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)
3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。
4、探究:三角函數(shù)的值在各象限的符號。
六、小結(jié)及作業(yè)
教案設(shè)計說明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。
首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。
其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時讓學(xué)生去辨證這個想法是否是科學(xué)的?因為一個概念是嚴(yán)謹(jǐn)?shù)模茖W(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學(xué)生去體驗一個新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。
再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點的坐標(biāo)這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。《任意角三角函數(shù)》說課稿3
一、教學(xué)目標(biāo)
1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號判斷);了解任意角的余切、正割、余割函數(shù)的.定義.
2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗.
3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.
4.培養(yǎng)學(xué)生求真務(wù)實、實事求是的科學(xué)態(tài)度.
二、重點、難點、關(guān)鍵
重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號判斷法.
難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù).
關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué).
四、教學(xué)過程
[執(zhí)教線索:
回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對任意角研究六個比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對應(yīng)法則、定義域、值域與正負(fù)符號判定)--例題與練習(xí)--回顧小結(jié)--布置作業(yè)]
(一)復(fù)習(xí)引入、回想再認(rèn)
開門見山,面對全體學(xué)生提問:
在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?
探索任意角的三角函數(shù)(板書課題),請同學(xué)們回想,再明確一下:
(情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?
讓學(xué)生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):
傳統(tǒng)定義:設(shè)在一個變化過程中有兩個變量_與y,如果對于_的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是_的函數(shù),_叫做自變量,自變量_的取值范圍叫做函數(shù)的定義域.
現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(_)和它對應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(_),_∈A,其中_叫自變量,自變量_的取值范圍A叫做函數(shù)的定義域.
設(shè)計意圖:
函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對三角函數(shù)的學(xué)習(xí)就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學(xué)經(jīng)驗表明:學(xué)生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識和認(rèn)知準(zhǔn)備.
(情景2)我們在初中通過銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個三角函數(shù).請回想:這三個三角函數(shù)分別是怎樣規(guī)定的?
學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào):
設(shè)計意圖:
學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少.
(二)引伸鋪墊、創(chuàng)設(shè)情景
(情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo).
能推廣嗎?怎樣推廣?針對剛才的問題點名讓學(xué)生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù).
設(shè)計意圖:
從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程.
教師對學(xué)生回答情況進(jìn)行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,教師板書圖形和比值):
把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與_軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點P,作Pm⊥_軸于m,構(gòu)造一個RtΔomP,則∠moP=α(銳角),設(shè)P(_,y)(_>0、y>0),α的臨邊om=_、對邊mP=y,斜邊長|oP∣=r.
根據(jù)銳角三角函數(shù)定義用_、y、r列出銳角α的正弦、余弦、正切三個比值,并補(bǔ)充對應(yīng)列出三個倒數(shù)比值:
設(shè)計意圖:
此處做法簡單,思想重要.為了順利實現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個認(rèn)識的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對某些知識進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實數(shù)到復(fù)數(shù)的擴(kuò)展等).
(情景4)各個比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?
追問:銳角α大小發(fā)生變化時,比值會改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.
引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識,
探索發(fā)現(xiàn):
對于銳角α的每一個確定值,六個比值都是
確定的,不會隨P在終邊上的移動而變化.
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).
設(shè)計意圖:
初中學(xué)生對函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識納入函數(shù)知識結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念.
(三)分析歸納、自主定義
(情境5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進(jìn)行探索和推廣:
對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:
;
(指出:不畫出角的方向,表明角具有任意性)
怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:
(板書)設(shè)α是一個任意角,在α終邊上除原點外任意取一點P(_,y),P與原點o之間的距離記作r(r=>0),列出六個比值:
α=kππ/2時,_=0,比值y/_、r/_無意義;
α=kπ時,y=0,比值_/y、r/y無意義.
追問:α大小發(fā)生變化時,比值會改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.
再引導(dǎo)學(xué)生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.
綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析).
因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).
根據(jù)歷史上的規(guī)定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當(dāng)于函數(shù)記號f(_).其它幾個三角函數(shù)也如此
投影顯示圖六,指導(dǎo)學(xué)生分析其對應(yīng)關(guān)系,進(jìn)一步體會其函數(shù)內(nèi)涵:
(圖六)
指導(dǎo)學(xué)生識記六個比值及函數(shù)名稱.
教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個函數(shù)的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).
引導(dǎo)學(xué)生進(jìn)一步分析理解:
已知角的集合與實數(shù)集之間可以建立一一對應(yīng)關(guān)系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應(yīng)著唯一的一個角,從而分別對應(yīng)著六個唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便.
設(shè)計意圖:
把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對"三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解.
(四)探索定義域
(情景6)(1)函數(shù)概念的三要素是什么?
函數(shù)三要素:對應(yīng)法則、定義域、值域.
正弦函數(shù)sinα的對應(yīng)法則是什么?
正弦函數(shù)sinα的對應(yīng)法則,實質(zhì)上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應(yīng),即α→y/r=sinα.
(2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:
三角函數(shù)
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導(dǎo)學(xué)生自主探索:
如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.
關(guān)于sinα=y/r、cosα=_/r,對于任意角α(弧度數(shù)),r>0,y/r、_/r恒有意義,定義域都是實數(shù)集R.
對于tanα=y/_,α=kππ/2時_=0,y/_無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶.
(關(guān)于值域,到后面再學(xué)習(xí)).
設(shè)計意圖:
定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握.
(五)符號判斷、形象識記
(情景7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!
引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于_、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識記口訣:
(同好得正、異號得負(fù))
sinα=y/r:上正下負(fù)橫為0cosα=_/r:左負(fù)右正縱為0tanα=y/_:交叉正負(fù)
設(shè)計意圖:
判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的識記口訣,這也是理解和記憶的關(guān)鍵.
(六)練習(xí)鞏固、理解記憶
1、自學(xué)例1:已知角α的終邊經(jīng)過點P(2,-3),求α的六個三角函數(shù)值.
要求:讀完題目,思考:計算什么?需要準(zhǔn)備什么?閉目心算,對照解答,模仿書面表達(dá)格式,鞏固定義.
課堂練習(xí):
p19題1:已知角α的終邊經(jīng)過點P(-3,-1),求α的六個三角函數(shù)值.
要求心算,并提問中下學(xué)生檢驗,--------
點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義).
補(bǔ)充例題:已知角α的終邊經(jīng)過點P(_,-3),cosα=4/5,求α的其它五個三角函數(shù)值.
師生探索:已知y=-3,要求其它五個三角函數(shù)值,須知r=?,_=?.根據(jù)定義得=(方程思想),_>0,解得_=4,從而--------.解答略.
2、自學(xué)例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.
提問,據(jù)反饋信息作點評、修正.
師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。
取特殊點能使計算更簡明。課堂練習(xí):p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.
強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.
設(shè)計意圖:
及時安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終.
(七)回顧小結(jié)、建構(gòu)網(wǎng)絡(luò)
要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識記,提問檢查并強(qiáng)調(diào):
1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點與坐標(biāo)原點重合,---,在終邊上任意取定一點P,---)
2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)
3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標(biāo)位置,-----)
設(shè)計意圖:
遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時總結(jié)識記主要內(nèi)容是上策.此處以問題形式讓學(xué)生自己歸納識記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時建構(gòu)知識網(wǎng)絡(luò),優(yōu)化知識結(jié)構(gòu),培養(yǎng)認(rèn)知能力.
(八)布置課外作業(yè)
1.書面作業(yè):習(xí)題4.3第3、4、5題.
2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對科學(xué)的摯著精神和堅忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.
教學(xué)設(shè)計說明
一、對本節(jié)教材的理解
三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.
星星之火,可以燎原.
直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ).
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點就是定義本身.
二、教學(xué)法加工
數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動地進(jìn)行思考活動,直接參與體驗數(shù)學(xué)知識產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識和方法,有效地發(fā)展智力、培養(yǎng)能力.
在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進(jìn)行教學(xué),第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時安排三角函數(shù)線、p15練習(xí)(突破難點)、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時.
教學(xué)經(jīng)驗表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動畫演示比值與角之間的依賴關(guān)系,拓展思維活動時空,力求使學(xué)生全員主動參與,積極思考,體會定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力.
將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強(qiáng)對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了.
教學(xué)中關(guān)于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個比值與α之間的函數(shù)關(guān)系,然后再對六個比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué).
三、教學(xué)過程分析(見穿插在教案中的設(shè)計意圖).《任意角三角函數(shù)》說課稿4
各位領(lǐng)導(dǎo),各位老師:
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》④(必修)第1。2。1節(jié)。
一、教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)內(nèi)容在全書及章節(jié)的地位:三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學(xué)過的“角的概念的推廣”的基礎(chǔ)上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,是其他所有知識的出發(fā)點。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、圖象和性質(zhì)。三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識還是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ)。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點就是定義本身。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
二、教學(xué)重點、難點、關(guān)鍵
教學(xué)重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。
教學(xué)難點:任意角的三角函數(shù)概念的建構(gòu)過程。
教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。
三、學(xué)情分析
學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力
1。學(xué)生在初中時已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2。學(xué)生的運算能力較差。
3。部分同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
4。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,必須在老師一定的指導(dǎo)下才能進(jìn)行。
四、教學(xué)目標(biāo)
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
1。基礎(chǔ)知識目標(biāo):使學(xué)生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;
2。能力訓(xùn)練目標(biāo):通過學(xué)生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。
3。情感目標(biāo):通過學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。
下面,為了講清重點、難點,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
五、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)教法,在課堂結(jié)構(gòu)上,設(shè)計了①創(chuàng)設(shè)情境——揭示課題②推廣認(rèn)知——形成概念③鞏固新知——探求規(guī)律④總結(jié)反思——提高認(rèn)識⑤任務(wù)后延——自主探究五個層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來,我再具體談一談這堂課的教學(xué)過程:
六、教學(xué)程序及設(shè)想
總體來說,由舊及新,由易及難,逐步加強(qiáng),逐步推進(jìn),給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識,拓展、完善定義。
先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標(biāo)系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
(一)創(chuàng)設(shè)情境——揭示課題
問題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?
【設(shè)計意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴(kuò)展)。溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少。
問題2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎?
問題3:若將銳角放入直角坐標(biāo)系中,你能用角的終邊上的點的坐標(biāo)來表示銳角三角函數(shù)嗎?
留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo)。
能表示嗎?怎樣表示?針對剛才的問題點名讓學(xué)生回答。用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù)。
【設(shè)計意圖】
從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程。
教師對學(xué)生回答情況進(jìn)行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,教師板書圖形和比值)。
問題4:對于確定的角,這三個比值是否與P在的終邊上的位置有關(guān)?為什么?
先讓學(xué)生想象思考,作出主觀判斷,再引導(dǎo)學(xué)生觀察右圖,
聯(lián)系相似三角形知識,探索發(fā)現(xiàn):對于銳角α的每一個確定值,
六個比值都是確定的,不會隨P在終邊上的移動而變化。
得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。
(二)推廣認(rèn)知——形成概念
將銳角的比值情形推廣到任意角α后,水到渠成,師生共同進(jìn)行探索和推廣出:任意角的三角函數(shù)定義。同時教師強(qiáng)調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù),對數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用。
教師指出:sinα、csα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,ctα、cscα、secα的定義域不要求記憶。
(關(guān)于值域,到后面再學(xué)習(xí))。
【設(shè)計意圖】定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域。指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握。
(三)鞏固新知——探求規(guī)律
為了使學(xué)生達(dá)到對知識的深化理解,進(jìn)而達(dá)到鞏固提高的效果,
例1。已知角的終邊過點,求的六個三角函數(shù)值
要求:讀完題目,思考:計算什么?需要準(zhǔn)備什么?閉目心算,對照板書,模仿書面表達(dá)格式。
鞏固定義之后,我特地設(shè)計了一組即時訓(xùn)練題,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動,培養(yǎng)學(xué)生分析解決問題的能力。
例2。求的正弦、余弦和正切值。
分析:終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義)
師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。
取特殊點能使計算更簡明。
等待學(xué)生基本理解和掌握三角函數(shù)定義后,觀察、分析初、高中所計算的函數(shù)值有何變化,讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),然后引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,從而導(dǎo)出三角函數(shù)值的正負(fù)與角所在象限的關(guān)系,進(jìn)而由教師總結(jié)符號記憶方法,便于學(xué)生記憶。
【設(shè)計意圖】判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、技能要求。要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的“才”字符號法則,這也是理解和記憶的關(guān)鍵。
(四)總結(jié)反思——提高認(rèn)識
由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號規(guī)律。讓學(xué)生通過知識性內(nèi)容的小結(jié),把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);通過數(shù)學(xué)思想方法的小結(jié),使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個性品質(zhì)目標(biāo)。
(五)任務(wù)后延——自主探究
學(xué)生經(jīng)過以上四個環(huán)節(jié)的學(xué)習(xí),已經(jīng)初步掌握了任意角的三角函數(shù)的定義及三角函數(shù)的符號規(guī)律,有待進(jìn)一步提高認(rèn)知水平,因此我針對學(xué)生素質(zhì)的差異設(shè)計了有層次的作業(yè),其中思考題的設(shè)計思想是:綜合練習(xí)鞏固提高,更為下節(jié)的學(xué)習(xí)內(nèi)容打下基礎(chǔ),同時留給學(xué)生課后自主探究,這樣既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的,以有利于全體學(xué)生的發(fā)展。
六、簡述板書設(shè)計。
ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節(jié)重要內(nèi)容的主體地位。
結(jié)束:以上,我僅從說教材,說學(xué)情,說教法,說學(xué)法,說教學(xué)程序上說明了“教什么”和“怎么教”,闡明了“為什么這樣教”。
希望各位領(lǐng)導(dǎo)、同行對本堂說課提出寶貴意見?!度我饨侨呛瘮?shù)》說課稿5各位領(lǐng)導(dǎo),各位老師:
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自人教版普通高中課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》④(必修)第1.2.1節(jié)。
一、教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)內(nèi)容在全書及章節(jié)的地位:三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。三角函數(shù)的定義是在初中對銳角三角函數(shù)的定義以及剛學(xué)過的“角的概念的推廣”的基礎(chǔ)上討論和研究的。三角函數(shù)的定義是本章最基本的概念,對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要,是其他所有知識的出發(fā)點。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、圖象和性質(zhì)。三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。三角函數(shù)知識還是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ)。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點就是定義本身。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
二、教學(xué)重點、難點、關(guān)鍵
教學(xué)重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。
教學(xué)難點:任意角的三角函數(shù)概念的建構(gòu)過程。
教學(xué)關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。
三、學(xué)情分析
學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力
1.學(xué)生在初中時已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2.學(xué)生的運算能力較差。
3.部分同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
4.在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,必須在老師一定的指導(dǎo)下才能進(jìn)行。
四、教學(xué)目標(biāo)
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定如下教學(xué)目標(biāo):
1.基礎(chǔ)知識目標(biāo):使學(xué)生正確理解任意角的正弦、余弦、正切的定義,了解余切、正割、余割的定義;
2.能力訓(xùn)練目標(biāo):通過學(xué)生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力。
3.情感目標(biāo):通過學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。
下面,為了講清重點、難點,使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劊?/p>
五、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、合作交流、師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)教法,在課堂結(jié)構(gòu)上,設(shè)計了①創(chuàng)設(shè)情境——揭示課題②推廣認(rèn)知——形成概念③鞏固新知——探求規(guī)律④總結(jié)反思——提高認(rèn)識⑤任務(wù)后延——自主探究五個層次的學(xué)法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來,我再具體談一談這堂課的教學(xué)過程:
六、教學(xué)程序及設(shè)想
總體來說,由舊及新,由易及難,逐步加強(qiáng),逐步推進(jìn),給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識,拓展、完善定義.
先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標(biāo)系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
(一)創(chuàng)設(shè)情境——揭示課題
問題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?
【設(shè)計意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴(kuò)展)。溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少。
問題2:角的概念推廣之后,這樣的三角函數(shù)定義還適用嗎?
問題3:若將銳角放入直角坐標(biāo)系中,你能用角的終邊上的點的坐標(biāo)來表示銳角三角函數(shù)嗎?
留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四人力資源培訓(xùn)與招聘加盟合同正規(guī)范本3篇
- 2025年度5G通信網(wǎng)絡(luò)建設(shè)施工合同范本6篇
- 2024蔬菜種植保險采購合同范本2篇
- 2024簡單的購房合同范本
- 2025年度彩鋼瓦屋頂安全性能評估與整改合同3篇
- 2025年度財務(wù)數(shù)據(jù)保密合規(guī)性審查合同范本3篇
- 2025年度離婚案件訴訟策略與執(zhí)行服務(wù)合同3篇
- 二零二五壁畫藝術(shù)教育合作合同3篇
- 二零二四年度「風(fēng)力發(fā)電設(shè)備維修」合同
- 二零二五年版10千伏電力施工合同范本正規(guī)范修訂版發(fā)布6篇
- 廣東省佛山市2025屆高三高中教學(xué)質(zhì)量檢測 (一)化學(xué)試題(含答案)
- 《國有控股上市公司高管薪酬的管控研究》
- 餐飲業(yè)環(huán)境保護(hù)管理方案
- 人教版【初中數(shù)學(xué)】知識點總結(jié)-全面+九年級上冊數(shù)學(xué)全冊教案
- 食品安全分享
- 礦山機(jī)械設(shè)備安全管理制度
- 計算機(jī)等級考試二級WPS Office高級應(yīng)用與設(shè)計試題及答案指導(dǎo)(2025年)
- 造價框架協(xié)議合同范例
- 糖尿病肢端壞疽
- 心衰患者的個案護(hù)理
- 醫(yī)護(hù)人員禮儀培訓(xùn)
評論
0/150
提交評論