




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第頁共頁高三數(shù)學知識點總結第一章:集合與函數(shù)概念一、集合有關概念1.集合的含義2.集合的中元素的三個特性:(1)元素的確定性如:世界上的山(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}注意:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集:N-或N+整數(shù)集:Z有理數(shù)集:Q實數(shù)集:R1)列舉法:{a,b,c……}3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合二、集合間的基本關系1.“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實即:①任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同時BíA那么A=B3.不含任何元素的集合叫做空集,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。4.子集個數(shù):有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集三、集合的運算運算類型交集并集補集第二章:基本初等函數(shù)一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.當是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負數(shù)的次方根是一個負數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).當是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數(shù)沒有偶次方根;0的任何次方根都是0,記作。注意:當是奇數(shù)時,當是偶數(shù)時,2.分數(shù)指數(shù)冪正數(shù)的分數(shù)指數(shù)冪的意義,規(guī)定:0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義指出:規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質也同樣可以推廣到有理數(shù)指數(shù)冪.3.實數(shù)指數(shù)冪的運算性質(二)指數(shù)函數(shù)及其性質1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質第三章:第三章函數(shù)的應用1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.3、函數(shù)零點的求法:求函數(shù)的零點:(1)(代數(shù)法)求方程的實數(shù)根;(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點.4、二次函數(shù)的零點:二次函數(shù).1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.高三數(shù)學知識點總結(二)一丶函數(shù)的有關概念1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:}叫做函數(shù)的值域.注意:1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.u相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關);②定義域一致(兩點必須同時具備)2.值域:先考慮其定義域(1)觀察法(2)配方法(3)代換法3.函數(shù)圖象知識歸納(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.(2)畫法A、描點法:B、圖象變換法常用變換方法有三種1)平移變換2)伸縮變換3)對稱變換4.區(qū)間的概念(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間(2)無窮區(qū)間(3)區(qū)間的數(shù)軸表示.5.映射學好數(shù)學的訣竅(2)課后做自己薄弱方面的習題。不是全方位大數(shù)量的題海戰(zhàn)術,而是針對自己的薄弱項進行專項練習,有針對有代表性的練習才能記憶深刻,才不容易忘記,而且也不會厚此薄彼。(3)課前做好預習,課后復習也是制勝的關鍵。高三數(shù)學知識點總結(三)三角函數(shù)注意歸一公式、誘導公式的正確性數(shù)列題1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;3.證明不等式時,有時構造函數(shù),利用函數(shù)單調性很簡單立體幾何題1.證明線面位置關系,一般不需要去建系,更簡單;2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系。概率問題1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);2.搞清是什么概率模型,套用哪個公式;3.記準均值、方差、標準差公式;4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1);5.注意計數(shù)時利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;高三數(shù)學上冊必修四知識點摘要內容子交并補集,還有冪指對函數(shù)。性質奇偶與增減,觀察圖象最明顯。復合函數(shù)式出現(xiàn),性質乘法法則辨,若要詳細證明它,還須將那定義抓。指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。兩個互為反函數(shù),單調性質都相同;圖象互為軸對稱,Y=____是對稱軸;求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。冪函數(shù)性質易記,指數(shù)化既約分數(shù);函數(shù)性質看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內,函數(shù)增減看正負。高考數(shù)學知識點歸納遺忘空集致誤由于空集是任何非空集合的真子集,因此B=時也滿足BA。解含有參數(shù)的集合問題時,要特別注意當參數(shù)在某個范圍內取值時所給的集合可能是空集這種情況。忽視集合元素的三性致誤集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。混淆命題的否定與否命題命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。充分條件、必要條件顛倒致誤對于兩個條件A,B,如果AB成立,則A是B的充分條件,B是A的必要條件;如果BA成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷?!盎颉薄扒摇薄胺恰崩斫獠粶手抡`命題p∨q真p真或q真,命題p∨q假p假且q假(概括為一真即真);命題p∧q真p真且q真,命題p∧q假p假或q假(概括為一假即假);綈p真p假,綈p假p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應起來進行理解,通過集合的運算求解。函數(shù)的單調區(qū)間理解不準致誤在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調遞增(減)區(qū)間即可。判斷函數(shù)奇偶性忽略定義域致誤判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。函數(shù)零點定理使用不當致誤如果函數(shù)y=f(____)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(____)在區(qū)間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(____)在(a,b)內有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。三角函數(shù)的`單調性判斷致誤對于函數(shù)y=Asin(ω____+φ)的單調性,當ω>0時,由于內層函數(shù)u=ω____+φ是單調遞增的,所以該函數(shù)的單調性和y=sin____的單調性相同,故可完全按照函數(shù)y=sin____的單調區(qū)間解決;但當ω<0時,內層函數(shù)u=ω____+φ是單調遞減的,此時該函數(shù)的單調性和函數(shù)y=sin____的單調性相反,就不能再按照函數(shù)y=sin____的單調性解決,一般是根據(jù)三角函數(shù)的奇偶性將內層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應該根據(jù)圖像,從直觀上進行判斷。忽視零向量致誤零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。向量夾角范圍不清致誤解題時要全面考慮問題。數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。an與Sn關系不清致誤在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數(shù)列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。對數(shù)列的定義、性質理解錯誤等差數(shù)列的前n項和在公差不為零時是關于n的常數(shù)項為零的二次函數(shù);一般地,有結論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N____)是等差數(shù)列。數(shù)列中的最值錯誤數(shù)列問題中其通項公式、前n項和公式都是關于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。錯位相減求和項處理不當致誤錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應項的乘積所組成的,求其前n項和?;痉椒ㄊ窃O這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。不等式性質應用不當致誤在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現(xiàn)錯誤。忽視基本不等式應用條件致誤利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務必注意a,b為正數(shù)(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。高三數(shù)學知識點總結(四)符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。一、求動點的軌跡方程的基本步驟⒈建立適當?shù)淖鴺讼?,設出動點M的坐標;⒉寫出點M的集合;⒊列出方程=0;⒋化簡方程為最簡形式;⒌檢驗。⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。⒊相關點法:用動點Q的坐標____,y表示相關點P的坐標____0、y0,然后代入點P的坐標(____0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。⒋參數(shù)法:當動點坐標____、y之間的直接關系難以找到時,往往先尋找____、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。____直譯法:求動點軌跡方程的一般步驟①建系——建立適當?shù)淖鴺讼?②設點——設軌跡上的任一點P(____,y);③列式——列出動點p所滿足的關系式;④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于____,Y的方程式,并化簡;⑤證明——證明所求方程即為符合條件的動點軌跡方程。高三數(shù)學必修一知識點歸納對數(shù)函數(shù)對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。右圖給出對于不同大小a所表示的函數(shù)圖形:可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=____的對稱圖形,因為它們互為反函數(shù)。(1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。(2)對數(shù)函數(shù)的值域為全部實數(shù)集合。(3)函數(shù)總是通過(1,0)這點。(4)a大于1時,為單調遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調遞減函數(shù),并且下凹。(5)顯然對數(shù)函數(shù)。高三數(shù)學重要知識點摘要1、函數(shù)的奇偶性(1)若f(____)是偶函數(shù),那么f(____)=f(—____);(2)若f(____)是奇函數(shù),0在其定義域內,則f(0)=0(可用于求參數(shù));(3)判斷函數(shù)奇偶性可用定義的等價形式:f(____)±f(—____)=0或(f(____)≠0);(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;(5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;2、復合函數(shù)的有關問題(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(____)]的定義域由不等式a≤g(____)≤b解出即可;若已知f[g(____)]的定義域為[a,b],求f(____)的定義域,相當于____∈[a,b]時,求g(____)的值域(即f(____)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。(2)復合函數(shù)的單調性由“同增異減”判定;3、函數(shù)圖像(或方程曲線的對稱性)(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;(3)曲線C1:f(____,y)=0,關于y=____+a(y=—____+a)的對稱曲線C2的方程為f(y—a,____+a)=0(或f(—y+a,—
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險公司翻新拆除協(xié)議樣本
- 二零二五年度零投入的股權轉讓與收益分配協(xié)議
- 小學二年級數(shù)學有余數(shù)的除法(2位數(shù)除以1位數(shù))自我檢測習題
- 紡織彈簧行業(yè)深度研究報告
- 汽車電子控制技術試題庫及參考答案
- 10 古詩三首 石灰吟(教學設計)-2023-2024學年統(tǒng)編版語文六年級下冊
- 第八課 征文的排版(一)(教學設計)2024-2025學年四年級上冊信息技術龍教版
- 道路 可行性研究報告
- 2025年中國米糊行業(yè)市場全景監(jiān)測及投資策略研究報告
- 山西省某住宅小區(qū)項目節(jié)能評估報告
- 負債質量管理辦法
- (完整word版)勞動合同書(電子版)正規(guī)范本(通用版)
- DB1522-T 1-2023 農(nóng)用天氣預報 水稻適宜度
- OptiStruct及HyperStudy優(yōu)化與工程應用
- Neo4j中文使用手冊以及例子
- 一例慢性阻塞性肺疾病個案護理
- 高中化學奧賽培訓計劃
- 國家電網(wǎng)公司輸變電工程安全文明施工設施標準化配置表(試行)
- DB51-T 2146-2023 天然氣汽車改裝企業(yè)管理規(guī)范
- 混凝土地坪施工方案
- 健身教練基礎知識匯編
評論
0/150
提交評論