建筑土木系探地雷達外文中英對照翻譯_第1頁
建筑土木系探地雷達外文中英對照翻譯_第2頁
建筑土木系探地雷達外文中英對照翻譯_第3頁
建筑土木系探地雷達外文中英對照翻譯_第4頁
建筑土木系探地雷達外文中英對照翻譯_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

-.z外文文獻3PHYSICALPROPERTIESI3.1WHYAREPHYSICALPROPERTIESIMPORTANT?GPRinvestigatesthesubsurfacebymakinguseofelectromagneticfieldswhichpropagateintothesubsurface.EMfieldswhicharetimevaryingconsistofcoupledelectric(E)andmagnetic(H)fields.Asdiscussedinsection2thefieldsinteractwiththesurroundingmedia.Thisinteractionismacroscopicallydescribedbytheconstitutiveequations2.5to2.7.Themannerinwhichtheelectromagneticfieldsinteractwithnaturalmaterialscontrolshowelectro-magneticfieldsspreadintothemediumandareattenuatedinthemedium.Inaddition,thevariationinphysicalpropertiesgivesrisetotheobservedsubsurfacereflectionsobtainedwithaGPRsystem.InmostgeologicalandNDT(non-destructivetesting)applicationsofGPR,electricalpropertiestendtobethedomi-nantfactorcontrollingGPRresponses.Magneticvariationsareusuallyweak.OccasionallymagneticpropertiescanaffectradarresponsesandGPRusersshouldbecognizantofmagneticeffects.Anelectricfieldinamaterialgivesrisetothemovementofelectriccharge,(i.e.,electriccurrent).Thecurrentflowdependsonthenatureofthematerial.Therearetwotypesofchargeinamaterial,namelyboundandfree,whichgiverisetotwotypesofcurrentflow,namelydisplacementandconduction.Inthefollowing,wewillprovideasimpleoverviewofthetwotypesofcurrentflow.Anin-depthdiscussionofelectricalpropertiescanbefoundinthete*tbyVonHippel,(1954).Magneticpropertiesarecontrolledbytheelectricchargecirculationcharacterattheatomicandmolecularlevel.Macroscopicmagneticpropertiesareaddressedbrieflyinthesenotes.VonHippel(1954)addressessomeofthebasicconcepts.3.2CONDUCTIONCURRENTSMostpeopleareveryfamiliarwithelectricalconductioncurrents.Conductioncurrentsarecreatedwhenunbound(free)chargesmoveinamaterial.Theelectronswhichflowinametalwireareane*ampleofconductioncurrent.Inametal,electronsmovethroughthemetallicmatri*totransferchargefromonepointtoanother.Anothercommonconductionmechanismisthemovementofionsinawatersolution.ThelaterismuchmoreimportantinmostGPRapplications.Conductioncurrentsarisewhenfreechargeacceleratestoaterminalvelocity(basicallyinstantaneously)whenanelectricfield(E)isapplied.Aslongastheelectricfieldisapplied,thechargemoves;whentheelectricfieldisremoved,thechargedeceleratesandstopsmovingFigure3-1illustratestheseconcepts.Figure:3-1Conceptualillustrationofchargemovementforconductioncurrents.a)ChargevelocityversustimeafterEfieldapplied.b)Energyise*tractedfromtheappliedelectricfieldversustime.Figure:3-2Whenanelectricfieldisapplied,unboundelectricalchargesacceleratetoaterminalvelocity.Afterinitialacceleration,velocitybecomesconstantandacontinualtransferofenergytothesurroundingmaterialintheformofheatoccursAllthetimethatchargeismoving,themovingchargeisworkingagainstitssurroundingsdissipatingenergyintheformofheat.Themovingchargebumpsinto'non-moving'objectsandtransfersmechanicalenergywhichappearsintheformofheatinthemedium.Conductioncurrentsrepresentanenergydissipatingmechanismforanelectromag-neticfield.Energyise*tractedfromtheelectromagneticfieldandtransferredirreversiblyintothemediumasheat.MathematicallyonedescribestherelationshipbetweenconductioncurrentandtheappliedelectricfieldasindicatedinEquation3-1.QUOTE〔3-1〕Insimplematerials,therelationshipislinearandtheproportionalityconstantisreferredtoastheelectricalconductiv-ity.ElectricalconductivityhasunitsofSiemenspermeter(S/m).Formanyapplications,however,itismoreusefultoworkwithunitsofmilliSiemenspermeter(mS/m).Conductivityisdependentonthechargedensityandtheinter-nalstatisticalmechanicalinteractionofthechargewithitssurroundings.Thesedetailsarebeyondthescopeofthisdiscussion.Itshouldbenotedthatelectricalconductivityandresistivityaredirectlyrelated.RefertoFigure3-3fortherelation-shipandthee*pressionofOhm'slaw.Electricalresistivityistheinverseofelectricalconductivity.Figure:3-3RelationshipbetweencurrentandappliedfieldaswellastherelationshipwillOhm'slawandresis-tively.ItisimportanttonotethattherearesimplificationsintheabovediscussionfromthegeneralformshowninChapter2.Theconductivityisshownasbeingaconstant.Infactitcanbeafunctionoftherateofchangeoftheelectricfield,theamplitudeofelectricfielditself,aswellastemperature,pressureandmanyotherfactors.Asaresult,oneshouldnotbesurprisedtoseebothnon-linearityandfrequencydependentconductivityinrealmaterials.GenerallythesearesecondordereffectsbuttheymustbeconsideredwhenadvanceduseofGPRiscontemplated.ForthisbasicGPRoverview,theywillbetreatedassecondaryissues.3.3DISPLACEMENT(POLARIZATION)CURRENTSDisplacementcurrentsareassociatedwithboundchargeswhichareconstrainedtolimiteddistanceofmovement.E*amplesofthisaretheelectroncloudaroundanatomicnucleus,theelectricalchargeinasmallmetalobjectimbed-dedinaninsulatingenvironment,andtheredistributionofthemoleculardipolemomentintrinsictosomemolecules.Figure3-4depictstheconcept.Whenanelectricfieldisapplied,boundchargemovestoanotherstaticconfiguration.Thistransitionoccursvirtuallyinstantaneouslyafterwhichthechargesnolongermove.Duringthetransition,energyise*tractedfromtheelectricfieldandtheenergyisstoredinthematerial.Whenthefieldisremoved,thechargemovesbacktotheoriginalequilibriumdistributionandenergyisreleased.Thistypeofbehavioristypicalofwhathappensinacapacitorinanelectriccircuit.Energyisstoredbythebuildupofchargeinthecapacitorandthenenergyise*tractedbythereleaseofthatchargefromthedevice.Figure:3-4Conceptualillustrationofchargemovementassociatedwithdisplacementcurrents.Figure3-5depictsthecharacterizationofchargeseparationinamaterial.Whenanelectricalfieldisapplied,dis-placementofchargeinabulkmaterialgivesrisetoadipolemomentdistributioninthematerial.Thechargesepara-tionisdescribedintermsofadipolemomentdensity,D.Inamoreformalderivation,Discalledtheelectricdisplacementfield(seechapter2).Insimplematerials,theinduceddipolemomentdensityisdirectlyproportionaltotheappliedelectricfieldandtheproportionalityconstantisreferredtoasthedielectricpermittivityofthematerialandhasunitsofFarads/m(F/m).Figure:3-5Dipolemomentdensityinducedbyappliedelectricfieldandrelationtodisplacementcurrent.Thecreationofadipolemomentdistributioninthematerialisassociatedwithchargemovement.Theelectriccurrentassociatedwiththischargemovementisreferredtoasdisplacementcurrent.Thedisplacementcurrentismathemati-callydefinedasthetimerateofchangeofthedipolemomentdensity.Theelectricpermittivityisneverzero.Eveninavacuum,thepermittivity,takesonafinitevalueof8.85*10-12F/m(Faradspermeter).Thee*planationforthisliesinthefieldofquantumelectrodynamicsandisfarbeyondthescopeofthisdiscussion.Itisoftenmoreconvenienttodealwithadimensionlesstermcalledrelativepermittivityordielectricconstant,K.AsdepictedinFigure3-6,therelativepermittivityistheratioofmaterialpermittivitytothepermittivityofavacuum.Figure:3-6Dielectricconstantorrelativepermittivityistheratioofpermittivityofmaterialtothatoffreespace.3.4TOTALCURRENTFLOWInanynaturalmaterial,thecurrentwhichflowsinresponsetotheapplicationofanelectricfieldisami*tureofcon-ductionanddisplacementcurrents.Dependingontherateofchangeoftheelectricfield,oneorotherofthetwotypesofcurrentmaydominatetheresponse.Mathematically,thetotalcurrentconsistsoftwoterms;onewhichdependsontheelectricfielditselfandonewhichdependsontherateofchangeoftheelectricfield.QUOTE(3-2)QUOTE(3-3)Quiteoftenitisusefultodealwithsinusoidallytimevaryinge*citationfields.Inthissituation,onefindsthatthedis-placementcurrentsareproportionaltotheangularfrequency.QUOTE(3-4)whereistheangularfrequency.Thedisplacementcurrentsareoutofphasewiththeconductioncurrentsby90°whichiswhatascribinganimaginaryQUOTEaspecttothedisplacementcomponentimplies.Thosefamiliarwithelectricalengineeringcircuitrytermi-nologywillrealizethatthereisaphaseshiftbetweentheconductioncurrentsandthedisplacementcurrentswhichindicatesthatonetermisanenergydissipationmechanismandtheotheroneisanenergystoragemechanism.Asimplifiedplotofdisplacementcurrentandconductioncurrentsaswellastotalcurrentversusfrequencyispre-sentedinFigure3-7.Usuallythereissomefrequencyabovewhichthedisplacementcurrentse*ceedtheconductioncurrents.Inasimplematerialwheretheconductivityandthedielectricpermittivityareconstant,thereisatransitionfrequency,,wherethedisplacementcurrentsandconductioncurrentsareequal.Abovethisfrequency,displace-mentcurrentsdominate;belowthisfrequency,conductioncurrentsdominate.ThisfactorisimportantwhenwedealwithEMwavepropagation.Thisfrequencydefinestheonsetofthelow-lossregimeimportanttoGPR.Figure:3-7Conduction,displacementandtotalcurrentversusfrequency.Mathematicallythetransitionfrequencyisdefined.QUOTE〔3-5〕Inaddition,anothertermcalledthelosstangentisdefined.Thelosstangentistheratioofconductiontodisplace-mentcurrentsinamaterial.QUOTE〔3-6〕Thetermlosstargettendstobemostcommoninelectricalengineeringconte*ts.Conductivityandpermittivityarenotindependentofthee*citationfrequency.Thereisalwayssomevariation.Thistopicisbeyondthescopeofthischapterofthenotesbutthereisconsiderableliterature(i.e.,Olhoeft,1975)onfre-quencydependentelectric3.5MAGNETICPERMEABILITYMagneticpermeabilityisseldomofmajorimportanceforGPRapplications.Forcompletenessandtoaddressthosee*ceptionalsituationswherepermeabilitymaybecomeimportant,wereviewsomeofthebasicaspectsofmagneticpermeability.Magneticpermeabilityisactuallyrelatedtotheintrinsicelectricalcharacteristicsofthebasicbuildingblocksofphys-icalmaterials.Insimpleterms,chargedparticles,whichformatoms,whichinturnmakemolecules,haveaquantummechanicalpropertyreferredtoasspin.Whencombinedwiththechargeontheparticle,spinresultsintheparticlehavingamagneticdipolemoment.Whenanelectronmovesaroundanatomicnucleus,thechargemotioncanalsocreateamagneticmoment.Thesimpleanalogyistohaveelectricalchargeuniformlydistributedonasphericalballandthenspinball.Theresultingrotatingchargeappearstobeacircularloopofcurrent,whichinturngivesonrisetoamagneticdipole.Magneticpropertiesareessentiallythepropertiesofanelectricalchangemovingaroundaclosedpath.alpropertieswhichcanbereferredto.a〕b〕Figure:3-8a)Asimplepicturesuggestingtheoriginofelectronspinmovement;b)relatingthemagneticmomentinducedinanelectroncloudbyachangeinmagneticfieldFigure:3-9Relatingthemagneticmomenttoasimpleelectronorbit.Thedetailsareobviouslymorecomple*butthisprovidesasimplepictorialmodeltouse.Atomsareformedofelec-tronsandprotonsplusneutrons.Theelectricallychangedcomponentshaveintrinsicandorbitalspinwhentheyformmoleculesofagiventypeofmaterial.Theparticularorientationofthespina*esoftheindividualparticlescanbealignedinrandomorstructuredwaysandmaybealteredbyanambientmagneticfield.Ifthemolecularstructuredoesnotacceptrandomspinorientationbutrequiresastructuredcrystallinearchitecture,thematerialcanhaveaper-manentmagnetization.Ifcomponentpartscanmovetoalignparalleloranti-paralleltoanappliedfield,aninducedmagnetizationresponsewillarise.Magneticpermeabilitymeasuresthedegreetowhichindividualdipolemomentsofthebuildingblockscanbealignedormovedfromtheirnormalorientationbyane*ternallyappliedmagneticfield.Themoreoftheindividualmomentsthatcanbemovedintoalignment,themoremagneticallypolarizablethematerial.Themagneticpropertiesofmateri-alsarequantifiedbymagneticdipolemomentdensity.Whenanelectricalcurrentflowsinaclosedloop,themag-neticmomentsis.QUOTE〔3-7〕whereMisthedipolemoment,IisthecurrentandAistheareaoftheloopenclosedbythecurrentfilament.MhasunitsofAm2Forbulkmaterials,thematerialischaracterizedbydipolemomentdensityQUOTE〔3-8〕whichhasunitsofA/m.Visvolume.Whenamagneticfield,H,inducesamagneticmoment,theamountofmomentise*pressedasQUOTE〔3-9〕wherekisthemagneticsusceptibility(andisadimensionlessquantity).Thereisconsiderablesimilaritybetweeninducedmagneticmomentandinducedelectricdipolemomentdiscussedpreviouslyinthedisplacementcurrentsec-tion.Inthematerial,themagneticflu*ise*pressedasQUOTE〔3-10〕andmagneticpermeabilityise*pressedasQUOTE〔3-11〕whereQUOTE〔3-12〕Thetermrelativemagneticpermeabilityise*pressedasQUOTE〔3-13〕inananalogousfashiontorelativepermittivity.Whenbothmagneticandelectricpropertiesvary,relativepermittiv-ityisusuallye*pressedasKetoavoidconfusion.Thepresenceofamagneticfieldinducestheindividualdipolemomenttochangeorientationandlineupwiththeappliedfield.Insomematerialsthealignmentisinthesamedirectionastheappliedfield,whereasinothermaterialsthealignmentmaybeanti-paralleltotheappliedfield.Thesetwotypesofbehaviorreferredtoasparamagnetismanddiamagnetism.Generallytheseresponsesareveryweakandgiverisetosmallvariationsinmagneticpermeability.Typicalvaluesofmagneticsusceptibilityarelessthan10-5.Insomesituations,however,themagneticmomentscanbealignedinlargesections(calleddomains)ofthecrystalstructureofamaterial.Themomentofdomainscanbechangedbythemoleculesinthecrystalstructurebehavinginasympatheticfashionandmovingfromonedomaintoanother.Suchmaterialsareknownasferromagneticmateri-als.Inferromagneticmaterials,thepolarizationcanbequitelargeandhighvaluesofKmintherangeoftensorevenhun-dredsmaybeobservedinmaterialssuchasiron,cobalt,andnickel.Withferromagneticmaterials,thebehaviorismorecomple*inthatthedipolemomentswhenmoved,oraligned,remainaligned.Thisisknownaspermanentmagnetization.Insuchmaterialsthepermeabilityisveryhighandthedynamicbehaviorofthematerialcomple*.Suchmaterialsseldomformalargevolumefractionofsoilsandrocksbuttheirpresenceinsmallamountscanbethedominantfactordeterminingbulkpermeability.Behaviorcanbeverycomple*.Thebehaviorofdipolemomentdensityiscontrolledbyhowdomainsmove,growandchangeorientationwhichcanbefielddependent,frequencydependentandtemperaturedependent.Thesubjectsarewellbeyondthescopeofthesenotes.Figure:3-10Ferromagneticdomainstructures:a)singlecrystal,b)polycrystallinespecimen.Arrowsrepresentthedirectionofmagnetization.Figure:3-11Magnetizationofaferromaticmaterial:a)unmagnetized,b)magnetizationbydomainwallmotion,c)magnetizationbydomainrotation.Insoilsandrocks,magneticbehaviorisdictatedbytheamountofmagnetite(orsimilarmineralssuchasmeghemiteorilmenite).Thegraph(fromGrant&West(1965))inFigure3-14showshowsusceptibilityvarieswithmagnetitevolumefraction.Thesimpleappro*imateformulaisQUOTE〔3-14〕whereqisthevolumefractionofmagnetiteinthematerial.Toputthisresultinperspective,1%byvolumemagnetite(whichisveryhighinmostcases)contentyieldsKm=1.038.OnlyinrarecaseswillKmbesignificantlydifferentfromunity.Figure:3-12Datafromwhichtheemperialformulaforsusceptibilityk=2.89*10-3V1.01wasderived.[MooneyandBleifuss(7).]-.z中文翻譯3物理性質I3.1為什么物理性質重要探地雷達是利用電磁場的傳播來研究地下空間。電磁場是隨時間變化的一對耦合的電場〔E〕和磁場〔H〕。在第2節(jié)中討論了場與周圍介質的相互作用。本文方程2.5到2.7的宏觀描述了這種相互作用。而電磁場的天然材料,互動的方式,控制電磁場在基質中的擴散、衰減。此外,在地下反射與雷達系統(tǒng)獲得觀測物理性能的產生到變化。在大多數(shù)探地雷達的地質和NDT〔無損檢測〕應用中,電氣性能往往是主要控制探地雷達響應的因素。磁場的變化通常是弱的。磁性能偶爾的影響雷達的反響,探地雷達用戶應該認識到磁效應。電場在材料中產生電荷的運動,〔即,電流〕。當前的流動取決于材料的性質。材料中有兩種類型的電荷,即束縛和自由,其產生兩種類型的束流,即位移和傳導。下面,我們將提供一個簡單的的電流流動的兩種類型的概述。在希佩爾文本〔1954〕可以看到關于電氣特性的深入探討。原子和分子水平上的電荷循環(huán)特性控制著磁性。希佩爾〔1954〕的筆記提出宏觀磁特性簡要討論和根本概念。3.2、傳導電流大多數(shù)人都非常熟悉電流的傳導。材料中未束縛的〔自由〕電荷運動創(chuàng)造出傳導電流。金屬絲的電子流是傳導電流的一個例子。在一種金屬,電子通過金屬基體的電荷從一點傳輸?shù)搅硪粋€。另一個常見的傳導機制是在水溶液中的離子的運動,是探地雷達中更重要應用。自由電荷加速到終端速度〔根本上瞬間〕時應用電場〔E〕產生傳導電流。圖3-1展示了僅利用電場使電荷運動拆下,減速和停頓移動的這些理念。圖3-1:傳導電流電荷運動的概念圖。a〕應用E場后電荷的速度與時間。b〕施加的電場隨時間提取的電能。圖3-2:當施加電場時,自由的電荷在初始加速度后,加速到終端速度。速度常數(shù)和在對周圍材料的能量連續(xù)轉移為以熱的形式出現(xiàn)。運動消耗所有的時間,運動的電荷能量耗散是在其周圍以熱的形式。運動電荷碰到的靜止物質并以熱的形式在介質中傳送機械能。傳導電流電磁場的能量耗散的機制。從電磁場的能量轉移到基質中提取和不可逆熱。數(shù)學描述傳導電流和電場之間的關系表示公式。QUOTE〔3-1〕對簡單的材料,導電性比例常數(shù)為線性關系。電導率的單位為西門子/米〔S/M〕。但是,對于許多應用程序,單位毫西門子每米〔MS/米〕,它是更有用的。導電性電荷密度和部統(tǒng)計力學是依賴于電荷與周圍的環(huán)境的相互作用。這些細節(jié)超出了本文討論的圍。值得注意的是,電導率和電阻率有直接的關系。引用3-3歐姆定律的表達的關系。圖3-3:電流和外加磁場的關系以及將歐姆定律,電阻性能之間的關系。根據上文第二章所討論的關于簡化的重要性需重視。電導率顯示為一常數(shù)。事實上,它可以對電場的變化率,電場振幅本身,以及溫度,壓力和許多其他因素的函數(shù)。其結果,應不要對兩個非線性和頻率所依據的真實材料感到驚奇。。通常這些都是二階效應,但他們必須考慮使用探地雷達先進設想。這個根本的探地雷達概述,他們視其為次要的問題。3.3位移〔極化〕的電流位移電流與電荷的運動有限距離的約束有關。這樣的例子如原子核周圍的電子云,在一個小的金屬物體在絕緣環(huán)境嵌入的一個電荷,且再分配的分子偶極矩的一些分子特性。圖3-4所描繪了這樣的概念:當施加電場時,束縛電荷移動到另一個靜態(tài)狀態(tài)。這種轉變發(fā)生幾乎瞬間之后,不再動彈受指控。在過渡期間,能源從電場和能量提取并存儲在材料中。場被消除時,電荷回到原來的平衡分布且釋放能量。這種發(fā)生在電子電路中的電容器行為是典型的。能量是由電容器中存儲的電荷的積累,然后能源是由從器件釋放的該電荷中提取。圖3-4:位移電流與電荷運動的有關概念圖。圖3-5描述材料中電荷的別離表征。當一個電場,在散裝材料的電荷位移引起材料中的偶極矩分布。電荷別離效果是用一個偶極矩密度來描述,根據一個更正式的推導,D.被稱為電位移場〔見第二章〕。在簡單的材料,誘導偶極矩密度成正比外加電場和比例常數(shù)稱為材料的介電常數(shù),單位為法拉/米〔F/M〕。圖3-5:偶極矩密度和電場誘導的位移電流的關系。材料中創(chuàng)造的偶極矩的分布與電荷的運動有關。電流與此相關的電荷運動被稱為位移電流。位移電流是數(shù)學上定義的時間變化率的偶極矩密度。介電常數(shù)不會是零。即使在真空,介電常數(shù),QUOTE為8.85×10-12F/M〔法拉每米〕的有限值。在量子電動力學方面對此的解釋,遠遠超出了本文的討論圍。它往往是更方便的處理的一個無量綱的術語稱為相對介電常數(shù)和介電常數(shù),K。圖3-6所示,相對介電常數(shù)是材料介電常數(shù)與真空介電常數(shù)的比率圖3-6:介電常數(shù)或相對介電常數(shù)材料的介電常數(shù),自由空間的比率3.4總電流任何的天然材料,電場的應用電流是一種混合的傳導和位移電流。根據電場的變化率,目前可能會占主導地位的有一個或其他的兩種類型。在數(shù)學上,總電流包括兩個方面;一個取決于電場本身和一個取決于電場的變化對率。QUOTE(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論