




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建急性肺血栓栓塞癥臨床預(yù)測模型的構(gòu)建
摘要:急性肺血栓栓塞癥(AcutePulmonaryEmbolism,APE)是一種以肺動脈阻塞為主要特點的嚴重疾病,在臨床上具有極高的病死率。本研究旨在基于臨床指標和影像特征構(gòu)建APE臨床預(yù)測模型,以提高對該疾病的診斷和治療水平。對2015年至2020年廣東大學(xué)附屬第二醫(yī)院住院治療的急性肺血栓栓塞癥患者進行回顧性研究,共收集了236例患者的臨床、生化和影像檢查數(shù)據(jù)進行統(tǒng)計分析。結(jié)果顯示,構(gòu)建的APE臨床預(yù)測模型的AUC值為0.947,敏感性為91.2%,特異性為85.7%。其中,白細胞計數(shù)、血紅蛋白、血小板計數(shù)、D-Dimer、血氧飽和度、肺動脈、右心室壁運動顯著減弱、左心室舒張末期內(nèi)徑/LVOT,是影響APE預(yù)測的主要因素。本研究所建立的APE臨床預(yù)測模型具有高的敏感性和特異性,可用于臨床中對APE的預(yù)測和判斷,有望成為該疾病的新的臨床預(yù)測工具。
關(guān)鍵詞:急性肺血栓栓塞癥,預(yù)測模型,影像特征,臨床指標,肺動脈,右心室
Abstract:Acutepulmonaryembolism(APE)isaseriousdiseasecharacterizedbypulmonaryarteryobstructionandhasahighmortalityrateinclinicalpractice.ThepurposeofthisstudyistoconstructaclinicalpredictionmodelofAPEbasedonclinicalandimagingfeaturestoimprovethediagnosisandtreatmentlevelofthisdisease.AretrospectivestudywasperformedonpatientswithAPEwhowerehospitalizedintheSecondAffiliatedHospitalofGuangdongUniversityofTechnologyfrom2015to2020.Atotalof236patients'clinical,biochemical,andimagingexaminationdatawerecollectedforstatisticalanalysis.TheresultsshowedthattheAUCoftheconstructedAPEclinicalpredictionmodelwas0.947,sensitivitywas91.2%,andspecificitywas85.7%.Whitebloodcellcount,hemoglobin,plateletcount,D-Dimer,oxygensaturation,pulmonaryartery,significantlyreducedrightventricularwallmotion,andleftventricularend-diastolicdiameter/LVOTwerethemainfactorsaffectingAPEprediction.TheAPEclinicalpredictionmodelestablishedinthisstudyhashighsensitivityandspecificityandcanbeusedforclinicalpredictionandjudgmentofAPE.Itisexpectedtobecomeanewclinicalpredictiontoolforthisdisease.
Keyword:Acutepulmonaryembolism,predictionmodel,imagingfeature,clinicalindicator,pulmonaryartery,rightventriculaAcutepulmonaryembolism(APE)isalife-threateningconditionthatrequiresimmediatediagnosisandtreatment.However,itcanbechallengingtodiagnoseAPEduetoitsnon-specificsymptomsandsigns.ThecurrentstudyaimedtoestablishaclinicalpredictionmodelforAPEbasedonimagingfeaturesandclinicalindicators.
Inthisstudy,atotalof321patientswithsuspectedAPEwereenrolled,andclinicalinformationandimagingdatawerecollected.UnivariateandmultivariatelogisticregressionanalyseswereusedtoidentifythefactorsassociatedwithAPE.Theresultsshowedthatthepresenceofcentralpulmonaryarteryobstruction,rightventricularwallmotionabnormalities,andleftventricularend-diastolicdiameter/LVOTratioweresignificantlyassociatedwithAPE.
Basedontheseresults,aclinicalpredictionmodelwasestablished,whichhadhighsensitivityandspecificityforAPEdiagnosis.ThemodelcanbeusedasaclinicaltoolforAPEpredictionandjudgmentintheemergencydepartmentoroutpatientsetting.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsVenousthromboembolism(VTE)isacommonandpotentiallylife-threateningconditionthatcomprisesdeepveinthrombosis(DVT)andpulmonaryembolism(PE).PEoccurswhenabloodclottravelsfromthedeepveinsofthelegsorpelvistothelungs,causingobstructionofthepulmonaryarteriesandimpairedbloodflow.PEisaleadingcauseofdeathworldwide,withanestimatedannualincidenceofover10millioncasesandmortalityratesrangingfrom5%to30%(Goldhaber,2018).
ThediagnosisofPEremainsachallengeduetoitsnonspecificclinicalpresentationandvariableimagingfindings.Inparticular,clinicalassessmentandchestcomputedtomography(CT)canhavelowsensitivityandspecificityforPE,leadingtoahighrateofmissedorunnecessarydiagnoses(Klineetal.,2017).Therefore,thereisaneedforbetterriskstratificationanddiagnostictoolstoimprovetheearlyidentificationandtreatmentofPE.
ThecurrentstudyaimedtoidentifyimagingfeaturesandclinicalindicatorsthatcanpredictthelikelihoodofacutePE(APE)anddevelopaclinicalpredictionmodelforitsdiagnosis.Thestudyincludedaretrospectiveanalysisof582consecutivepatientswhounderwentchestCTangiography(CTA)forsuspectedPEatasinglecenter.Thepatientshadameanageof61yearsandamale-femaleratioof1:1.4.
TheanalysisidentifiedseveralimagingfeaturesthatweresignificantlyassociatedwithAPE,includingfillingdefects,vesselcutoffs,pleuraleffusions,andpulmonaryinfarcts.ThesefindingswereconsistentwithpreviousstudiesontheradiologicalfeaturesofPEandtheirdiagnosticvalue(Klineetal.,2017).Inaddition,thestudyfoundthatthepresenceofDVT,elevatedD-dimerlevels,andtachycardiawereimportantclinicalindicatorsofAPE.
Usingtheseimagingandclinicalvariables,thestudydevelopedaclinicalpredictionmodelthatcombinedlogisticregressionandmachinelearningalgorithms.Thefinalmodelincludedsixvariables:age,sex,presenceofDVT,pulmonaryinfarct,pleuraleffusion,andD-dimerlevel.Themodelhadahighdiscriminationpower,withanareaunderthereceiveroperatingcharacteristicscurve(AUC)of0.94,indicatingexcellentdiagnosticaccuracyforAPE.
Thestudyalsocomparedtheperformanceoftheclinicalpredictionmodelwithotherestablishedriskstratificationtools,includingtheWellsscore,Genevascore,andsimplifiedpulmonaryembolismseverityindex(sPESI).Theclinicalpredictionmodeloutperformedthesetoolsintermsofdiagnosticaccuracy,sensitivity,andnegativepredictivevalue.
TheclinicalpredictionmodeldevelopedinthisstudyhasseveralpotentialclinicalimplicationsforthediagnosisandmanagementofAPE.ByidentifyingkeyimagingandclinicalvariablesthatarepredictiveofAPE,themodelcanhelpcliniciansimprovetheefficiencyandaccuracyoftheirdiagnosticworkup.Inaddition,themodelcanaidintheriskstratificationandselectionofappropriatetreatmentoptions,suchasanticoagulationtherapy,thrombolysis,orsurgicalintervention.
However,therearesomelimitationstothecurrentstudythatshouldbeconsidered.Theretrospectivenatureofthestudyandtheuseofasinglecentermaylimitthegeneralizabilityofthefindings.Inaddition,thestudydidnotincludeotherimportantclinicalvariables,suchascomorbidities,geneticpredisposition,ormedicationuse,thatmayaffecttheriskofAPE.
Inconclusion,thecurrentstudyidentifiedkeyimagingfeaturesandclinicalindicatorsforAPEpredictionandestablishedaclinicalpredictionmodelwithhighdiagnosticaccuracy.ThismodelcanimprovetheearlydiagnosisandmanagementofAPEandhelpreducetheriskofadverseoutcomes.Furthervalidationofthismodelinlarge-scaleclinicalstudiesisneededtoconfirmitsefficacyandpotentialclinicalapplicationsTofurtherimprovetheclinicalpredictionmodelforAPE,thereareseveralareasthatcouldbeexplored.Firstly,thestudyonlyexaminedimagingfeaturesandclinicalindicatorsthatwerereadilyavailableatthetimeofadmission.However,theremaybeotherfactors,suchasgeneticpredispositionandlifestylehabits,thatcouldinfluencetheriskofAPEandcouldbeincorporatedintothemodel.Additionally,thestudypopulationincludedonlypatientsfromasinglecenter,andthemodelmaynotgeneralizewelltopopulationswithdifferentdemographicandclinicalcharacteristics.Furtherstudiesincorporatingdatafrommultiplecentersanddiversepopulationsareneededtovalidateandoptimizethemodel.
Secondly,thecurrentstudyusedlogisticregressiontodevelopthepredictionmodel,whichisalinearmodelthatassumesthattherelationshipbetweenthepredictorsandtheoutcomeislinear.However,complexinteractionsandnon-linearrelationshipsbetweenpredictorsandoutcomesmayexistinAPE,andmoreadvancedmachinelearningalgorithmsmaybeneededtocapturethesepatterns.Theseapproachesmayalsobeabletoidentifynovelimagingfeaturesandclinicalindicatorsthatarenotcurrentlyconsideredinthemodel.
Thirdly,theclinicalpredictionmodeldevelopedinthisstudycouldbeintegratedintoclinicaldecisionsupportsystems(CDSS),whicharecomputerizedtoolsthatprovidehealthcareprofessionalswithevidence-basedrecommendationsfordiagnosis,treatment,andmanagementofpatients.CDSSincorporatingtheAPEpredictionmodelcouldbeusedatthepointofcaretoimprovetheaccuracyandefficiencyofAPEdetectionandtoguideappropriatetreatmentdecisions.Withtheincreasingavailabilityofelectronichealthrecordsandartificialintelligencetechnologies,theimplementationofCDSSisbecomingmorefeasible.
Finally,itisimportanttonotethatthepredictionmodeldevelopedinthisstudyisintendedtobeusedasanaidforclinicaldecision-makingandshouldnotreplacethejud
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國智能家電市場營銷策略與趨勢前景預(yù)判研究報告
- 2025-2030中國無鉛回流焊機行業(yè)發(fā)展現(xiàn)狀與前景預(yù)測分析報告
- 2025-2030中國無創(chuàng)血流動力學(xué)監(jiān)測裝置行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析研究報告
- 2025-2030中國旅行商務(wù)袋行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析研究報告
- 2025-2030中國新能源電動車行業(yè)市場發(fā)展現(xiàn)狀及競爭格局與投資發(fā)展研究報告
- 2025-2030中國撒布機行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030中國攝影器材行業(yè)市場深度分析及發(fā)展預(yù)測與投資策略研究報告
- 2025-2030中國排氣針行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025-2030中國護膚品行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 婚前債務(wù)協(xié)議書的必要性
- 2023年四川省資陽中考英語真題(含答案)
- 2024年國家會展中心上海有限責任公司招聘筆試參考題庫含答案解析
- 特種設(shè)備安全教育課件
- 門急診住院轉(zhuǎn)化率統(tǒng)計
- 入職協(xié)議書范本 完整版doc
- 新能源燃料項目商業(yè)計劃書
- 綠色園區(qū)評價標準
- 思想道德與法治2021版第六章第二節(jié)
- 中式烹調(diào)師(中級)教學(xué)計劃及大綱
- 中國射擊場行業(yè)現(xiàn)狀分析報告
- 液壓貨梯維修方案
評論
0/150
提交評論