版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若集合A=α|α=π6+kπ,k∈ZA.? B.π6 C.-π2.已知,,,則()A. B. C.-7 D.73.若,則t=()A.32 B.23 C.14 D.134.已知平面向量,,若與同向,則實(shí)數(shù)的值是()A. B. C. D.5.在三棱錐中,,二面角的大小為,則三棱錐的外接球的表面積為()A. B. C. D.6.設(shè)的內(nèi)角,,所對(duì)的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.97.如圖,一船自西向東勻速航行,上午10時(shí)到達(dá)一座燈塔P的南偏西75°距塔64海里的M處,下午2時(shí)到達(dá)這座燈塔的東南方向的N處,則這只船的航行速度為()海里/小時(shí).A. B.C. D.8.設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí),的最大值為()A.0 B.1 C. D.39.在公比為2的等比數(shù)列中,,則等于()A.4 B.8 C.12 D.2410.為等差數(shù)列的前項(xiàng)和,且,.記,其中表示不超過的最大整數(shù),如,.?dāng)?shù)列的前項(xiàng)和為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對(duì)的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.12.設(shè)等比數(shù)列滿足a1+a2=–1,a1–a3=–3,則a4=___________.13.若向量與平行.則__.14.已知數(shù)列{}滿足,若數(shù)列{}單調(diào)遞增,數(shù)列{}單調(diào)遞減,數(shù)列{}的通項(xiàng)公式為____.15.已知實(shí)數(shù)滿足,則的最小值為_______.16.根據(jù)黨中央關(guān)于“精準(zhǔn)脫貧”的要求,石嘴山市農(nóng)業(yè)經(jīng)濟(jì)部門派3位專家對(duì)大武口、惠農(nóng)2個(gè)區(qū)進(jìn)行調(diào)研,每個(gè)區(qū)至少派1位專家,則甲,乙兩位專家派遣至惠農(nóng)區(qū)的概率為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,四邊形是邊長為的正方形,平面平面,若,分別是的中點(diǎn).(1)求證:平面;(2)求證:平面平面;(3)求幾何體的體積.18.求下列方程和不等式的解集(1)(2)19.?dāng)?shù)列的前項(xiàng)和.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.在直三棱柱中,,,,分別是,的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個(gè)季度的銷售額數(shù)據(jù)統(tǒng)計(jì)如下表(其中表示年第一季度,以此類推):季度季度編號(hào)x銷售額y(百萬元)(1)公司市場部從中任選個(gè)季度的數(shù)據(jù)進(jìn)行對(duì)比分析,求這個(gè)季度的銷售額都超過千萬元的概率;(2)求關(guān)于的線性回歸方程,并預(yù)測該公司的銷售額.附:線性回歸方程:其中,參考數(shù)據(jù):.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
先化簡集合A,B,再求A∩B.【詳解】由題得B={x|-1≤x≤3},A=?所以A∩B=π故選:B【點(diǎn)睛】本題主要考查一元二次不等式的解法和集合的交集運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題,2、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點(diǎn)睛】本題考查同角間的三角函數(shù)關(guān)系,考查兩角和的正切公式,解題關(guān)鍵是把已知等式平方,并把1用代替,以求得.3、B【解析】
先計(jì)算得到,再根據(jù)得到等式解得答案.【詳解】故答案選B【點(diǎn)睛】本題考查了向量的計(jì)算,意在考查學(xué)生對(duì)于向量運(yùn)算法則的靈活運(yùn)用及計(jì)算能力.4、D【解析】
通過同向向量的性質(zhì)即可得到答案.【詳解】與同向,,解得或(舍去),故選D.【點(diǎn)睛】本題主要考查平行向量的坐標(biāo)運(yùn)算,但注意同向,難度較小.5、D【解析】
取AB中點(diǎn)F,SC中點(diǎn)E,設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為,由,在四邊形中,設(shè),外接球半徑為,則則可求,表面積可求【詳解】取AB中點(diǎn)F,SC中點(diǎn)E,連接SF,CF,因?yàn)閯t為二面角的平面角,即又設(shè)的外心為,外接圓半徑為三棱錐的外接球球心為則面,由在四邊形中,設(shè),外接球半徑為,則則三棱錐的外接球的表面積為故選D【點(diǎn)睛】本題考查二面角,三棱錐的外接球,考查空間想象能力,考查正弦定理及運(yùn)算求解能力,是中檔題6、D【解析】
由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故三角形的面積的最大值為,故選D.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.7、C【解析】
先求出的值,再根據(jù)正弦定理求出的值,從而求得船的航行速度.【詳解】由題意,在中,由正弦定理得,得所以船的航行速度為(海里/小時(shí))故選C項(xiàng).【點(diǎn)睛】本題考查利用正弦定理解三角形,屬于簡單題.8、B【解析】
x,y,z為正實(shí)數(shù),且,根據(jù)基本不等式得,當(dāng)且僅當(dāng)x=2y取等號(hào),所以x=2y時(shí),取得最大值1,此時(shí),,當(dāng)時(shí),取最大值1,的最大值為1,故選B.9、D【解析】
由等比數(shù)列的性質(zhì)可得,可求出,則答案可求解.【詳解】等比數(shù)列的公比為2,由,即,所以舍所以故選:D【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)和通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】
利用等差數(shù)列的通項(xiàng)公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項(xiàng)和,且,,.可得,則公差.,,則,,,.?dāng)?shù)列的前項(xiàng)和為:.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、對(duì)數(shù)運(yùn)算性質(zhì)、取整函數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關(guān)系,而由面積可得,利用基本不等式可求的最小值.【詳解】因?yàn)?,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.因?yàn)?,所以,所以即,?dāng)且僅當(dāng)時(shí)等號(hào)成立.故填4.【點(diǎn)睛】三角形中與邊有關(guān)的最值問題,可根據(jù)題設(shè)條件找到各邊的等式關(guān)系或角的等量關(guān)系,再根據(jù)邊的關(guān)系式的結(jié)構(gòu)特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關(guān)的目標(biāo)代數(shù)式轉(zhuǎn)化為與角有關(guān)的三角函數(shù)式后再求其最值.12、-8【解析】設(shè)等比數(shù)列的公比為,很明顯,結(jié)合等比數(shù)列的通項(xiàng)公式和題意可得方程組:,由可得:,代入①可得,由等比數(shù)列的通項(xiàng)公式可得.【名師點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡化運(yùn)算過程.13、【解析】
由題意利用兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點(diǎn)睛】本題主要考查了兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】
分別求出{}、{}的通項(xiàng)公式,再統(tǒng)一形式即可得解。【詳解】解:根據(jù)題意,又單調(diào)遞減,{}單調(diào)遞減增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,綜上,【點(diǎn)睛】本題考查了等比數(shù)列性質(zhì)的靈活運(yùn)用,考查了分類思想和運(yùn)算能力,屬于難題。15、【解析】
實(shí)數(shù)滿足表示點(diǎn)在直線上,可以看作點(diǎn)到原點(diǎn)的距離,最小值是原點(diǎn)到直線的距離,根據(jù)點(diǎn)到直線的距離公式求解.【詳解】因?yàn)閷?shí)數(shù)滿足=1所以表示直線上點(diǎn)到原點(diǎn)的距離,故的最小值為原點(diǎn)到直線的距離,即,故的最小值為1.【點(diǎn)睛】本題考查點(diǎn)到點(diǎn),點(diǎn)到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識(shí)別.16、【解析】
將所有的基本事件全部列舉出來,確定基本事件的總數(shù),并確定所求事件所包含的基本事件數(shù),然后利用古典概型的概率公式求出答案.【詳解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口區(qū)調(diào)研的專家),共個(gè),因此,所求的事件的概率為,故答案為.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,解決這類問題的關(guān)鍵在于確定基本事件的數(shù)目,一般利用枚舉法和數(shù)狀圖法來列舉,遵循不重不漏的基本原則,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)詳見解析(2)【解析】
試題分析:(1)如圖,連接EA交BD于F,利用正方形的性質(zhì)、三角形的中位線定理、線面平行的判定定理即可證明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是線BD與平面EBC所成的角.經(jīng)過計(jì)算即可得出.(3)利用體積公式即可得出.試題解析:(1)如圖,連接,易知為的中點(diǎn).因?yàn)?,分別是和的中點(diǎn),所以,因?yàn)槠矫妫矫?,所以平?(2)證明:因?yàn)樗倪呅螢檎叫危?又因?yàn)槠矫嫫矫?,所以平?所以.又因?yàn)椋?所以平面.從而平面平面.(3)取AB中點(diǎn)N,連接,因?yàn)?,所以,?又平面平面,所以平面.因?yàn)槭撬睦忮F,所以.即幾何體的體積.點(diǎn)睛:本題考查了正方形的性質(zhì)、線面,面面平行垂直的判定與性質(zhì)定理、三棱錐的體積計(jì)算公式、線面角的求法,考查了推理能力與計(jì)算能力,屬于中檔題.18、(1)或;(2).【解析】
(1)先將方程變形得到,根據(jù),得到,進(jìn)而可求出結(jié)果;(2)由題意得到,求解即可得出結(jié)果.【詳解】(1)由得,因?yàn)椋?,因此或;即原方程的解集為:或;?)由得,即,解得:.故,原不等式的解集為:.【點(diǎn)睛】本題主要考查解含三角函數(shù)的方程,以及反三角函數(shù)不等式,熟記三角函數(shù)性質(zhì),根據(jù)函數(shù)單調(diào)性即可求解,屬于常考題型.19、(1)(2)【解析】
(1)當(dāng)時(shí),,利用得到通項(xiàng)公式,驗(yàn)證得到答案.(2)根據(jù)的正負(fù)將和分為兩種情況,和,分別計(jì)算得到答案.【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),.綜上所述.(2)當(dāng)時(shí),,所以,當(dāng)時(shí),,.綜上所述.【點(diǎn)睛】本題考查了利用求通項(xiàng)公式,數(shù)列的絕對(duì)值和,忽略時(shí)的情況是容易犯的錯(cuò)誤.20、(1)證明見解析。(2)【解析】
(1)首先根據(jù)已知得到,再根據(jù)線面平行的判定即可得到平面.(2)首先根據(jù)線面垂直的判定證明平面,即可找到為與平面所成角,在計(jì)算其正弦值即可.【詳解】(1)因?yàn)榉謩e是,的中點(diǎn),所以四邊形為平行四邊形,即.平面,所以平面.(2)因?yàn)?,為中點(diǎn),所以.平面.所以為與平面所成角.在中,,,所以,.在中,,,所以.【點(diǎn)睛】本題第一問考查線面平行的判定,本題第二問考查線面成角,屬于中檔題.21、(1);(2)關(guān)于的線性回歸方程為,預(yù)測該公司的銷售額為百萬元.【解析】
(1)列舉出所有的基本事件,并確定事件“這個(gè)季度的銷售額都超過千萬元”然后利用古典概型的概率公式可計(jì)算出所求事件的概率;(2)計(jì)算出和的值,然后將表格中的數(shù)據(jù)代入最小二乘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能安防及弱電系統(tǒng)2025年度施工合同
- 2025年天津貨運(yùn)從業(yè)資格證題
- 2025年廊坊貨運(yùn)從業(yè)資格證在哪里練題
- 土石方裝卸作業(yè)2025年度物流服務(wù)合同3篇
- 二零二五年度出租房衛(wèi)生應(yīng)急預(yù)案與租戶安全協(xié)議4篇
- 二零二五版教育合同:國防獎(jiǎng)學(xué)金項(xiàng)目實(shí)施與管理協(xié)議6篇
- 事業(yè)單位市場營銷合作協(xié)議(2024年修訂版)3篇
- 二零二五年高性能混凝土運(yùn)輸及安裝合同模板3篇
- 二零二五年度彩鋼瓦產(chǎn)品售后維修及保養(yǎng)協(xié)議3篇
- 2025年度窗簾行業(yè)人才培養(yǎng)與就業(yè)服務(wù)合同3篇
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報(bào)告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質(zhì)量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數(shù)學(xué)真題試卷(含答案)
- 高中學(xué)校開學(xué)典禮方案
- 內(nèi)審檢查表完整版本
- 3級(jí)人工智能訓(xùn)練師(高級(jí))國家職業(yè)技能鑒定考試題及答案
- 孤殘兒童護(hù)理員技能鑒定考試題庫(含答案)
評(píng)論
0/150
提交評(píng)論