深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用_第1頁(yè)
深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用_第2頁(yè)
深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用_第3頁(yè)
深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用_第4頁(yè)
深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

深度梯度提升模型及其在腦卒中預(yù)測(cè)中的應(yīng)用摘要

隨著數(shù)據(jù)量的增加,提升算法已經(jīng)成為了機(jī)器學(xué)習(xí)中的一大研究熱點(diǎn)。其中,梯度提升模型(GradientBoostingMachine,GBM)是一種常見(jiàn)的提升算法。但是,標(biāo)準(zhǔn)的GBM對(duì)于深度神經(jīng)網(wǎng)絡(luò)的非線性建模能力較弱,為了克服這一缺陷,研究人員發(fā)展出了深度梯度提升模型(DeepGradientBoostingMachine,DGBM)。

本研究主要使用深度梯度提升模型,對(duì)腦卒中的預(yù)測(cè)建模。通過(guò)仿真實(shí)驗(yàn)的結(jié)果表明,與傳統(tǒng)提升算法和神經(jīng)網(wǎng)絡(luò)算法相比,DGBM具有更好的預(yù)測(cè)性能,可以更好地發(fā)現(xiàn)腦卒中的相關(guān)風(fēng)險(xiǎn)因素。

通過(guò)實(shí)驗(yàn),我們發(fā)現(xiàn)DGBM具有較強(qiáng)的自適應(yīng)擬合能力,可以自動(dòng)學(xué)習(xí)輸入變量的重要性,提升數(shù)據(jù)的處理效率。此外,相對(duì)于傳統(tǒng)的機(jī)器學(xué)習(xí)算法,DGBM對(duì)數(shù)據(jù)的連續(xù)性要求較低,具有更廣泛的應(yīng)用范圍。

關(guān)鍵詞:深度梯度提升模型;腦卒中預(yù)測(cè);自適應(yīng)擬合;風(fēng)險(xiǎn)因素;數(shù)據(jù)處理

Abstract

Withtheincreaseofdatavolume,boostingalgorithmshavebecomeahotresearchtopicinmachinelearning.Amongthem,GradientBoostingMachine(GBM)isacommonboostingalgorithm.However,thestandardGBMhasweaknonlinearmodelingabilityfordeepneuralnetworks.Toovercomethisshortcoming,researchershavedevelopedDeepGradientBoostingMachine(DGBM).

Inthisstudy,wemainlyusetheDeepGradientBoostingMachinetomodelthepredictionofstroke.Theresultsofsimulationexperimentsshowthatcomparedwithtraditionalboostingalgorithmsandneuralnetworkalgorithms,DGBMhasbetterpredictionperformanceandcanbetterdiscoverrelevantriskfactorsforstroke.

Throughexperiments,wefoundthatDGBMhasstrongadaptivefittingability,canautomaticallylearntheimportanceofinputvariables,andimprovetheefficiencyofdataprocessing.Inaddition,comparedwithtraditionalmachinelearningalgorithms,DGBMhasalowerrequirementfordatacontinuityandhasawiderrangeofapplications.

Keywords:DeepGradientBoostingMachine;StrokePrediction;AdaptiveFitting;RiskFactors;DataProcessingStrokeisamajorhealthconcernandaleadingcauseofdisabilityanddeathglobally.Riskfactorsforstrokecanbebroadlygroupedintotwocategories,modifiableandnon-modifiable.Non-modifiableriskfactorsincludeage,gender,genetics,andfamilyhistory.However,modifiableriskfactorsplayasignificantroleinthepreventionofstroke.

Themodifiableriskfactorsforstrokeincludehighbloodpressure,smoking,diabetes,highcholesterol,obesity,physicalinactivity,unhealthydiet,andexcessivealcoholconsumption.Theseriskfactorsincreasethelikelihoodofdevelopingatherosclerosis,whichisthehardeningandnarrowingofthearteries,andcanleadtostroke.

Highbloodpressureisthemostimportantmodifiableriskfactorforstroke.Itdamagesthebloodvessels,makingthemmorepronetoblockageorrupture,leadingtostroke.Smokingincreasestheriskofstrokebydamagingthebloodvesselsandincreasingtheformationofbloodclots.Diabetesincreasestheriskofstrokebydamagingthebloodvesselsandincreasingthelikelihoodofbloodclotsformation.

Highcholesterollevelscontributetotheformationofatherosclerosisandincreasestheriskofstroke.Obesity,physicalinactivity,andunhealthydietscontributetothedevelopmentofatherosclerosisandincreasetheriskofstroke.Excessivealcoholconsumptioncontributestohighbloodpressureandincreasestheriskofstroke.

Inconclusion,identifyingmodifiableriskfactorsforstrokeiscriticalinthepreventionandmanagementofstroke.TheDeepGradientBoostingMachine(DGBM)hasemergedasapowerfultoolinpredictingtheriskofstrokeandidentifyingrelevantriskfactors.Itsadaptivefittingability,automaticlearningofinputvariableimportance,andwiderangeofapplicationsmakeitaneffectiveoptionfordataprocessinginstrokepredictionFurthermore,besidesthetraditionalriskfactorsforstrokesuchashypertension,diabetes,andsmoking,emergingriskfactorssuchasairpollutionandsleepapneahavegainedattentioninrecentyears.Airpollutionhasbeenfoundtoincreasetheriskofstrokebypromotinginflammationandoxidativestress,whilesleepapnea,acommonbreathingdisorderduringsleep,isassociatedwithanincreasedriskofstrokeduetodisruptedoxygensupplytothebrain.

Itisalsoworthnotingthatstrokepreventionandmanagementrequireamultidisciplinaryapproachinvolvingnotonlymedicalprofessionalsbutalsopatients,families,andcommunities.Patienteducationandlifestylemodificationprograms,suchasregularexercise,healthyeating,andstressreduction,cancomplementmedicaltreatmentsandreducetheriskofstroke.

Inconclusion,strokeisamajorpublichealthissueworldwide,withahighburdenofmortalityanddisability.Whilethetraditionalriskfactorsforstrokeremainsignificant,newriskfactorshaveemerged,anddataprocessingtoolssuchasDGBMcanaidintheiridentificationandmanagement.Collaborativeeffortsamonghealthcareprofessionals,patients,families,andcommunitiesarenecessarytopreventandmanagestrokeeffectivelyStrokeisacomplexandheterogeneousdiseasewithahighburdenofmortalityanddisability.Itrequiresamultidisciplinaryapproachtoitsmanagement,includingprimaryprevention,acutetreatment,andrehabilitation.Whiletherehavebeensignificantadvancementsinstrokeresearchandtreatment,thereisstillmuchworktobedonetoeffectivelypreventandmanagestroke.

Oneareaofresearchthatshowspromiseisthedevelopmentofnovelbiomarkersforstroke.Biomarkersaremeasurableindicatorsofabiologicalstateorprocessandcanprovidevaluableinformationontheunderlyingmechanismsofstroke.Forexample,certainproteinsinthebloodorcerebrospinalfluidmayindicateinflammation,oxidativestress,orvascularinjury,allofwhichareknowntocontributetostrokedevelopmentandprogression.

Anotherareaofresearchthatholdspromiseistheuseoftelestrokeandtelemedicinetechnologiestoimprovestrokecareinunderservedorremoteareas.Telestrokeinvolvestheuseofvideoconferencingandtelecommunicationstechnologiestoconnectstrokespecialistswithpatientsandhealthcareprovidersinremotelocations.Thisenablestimelydiagnosis,treatment,andtransferofpatients,improvingoutcomesandreducingtheburdenonlocalhealthcarefacilities.

Finally,strokepreventionremainsacrucialaspectofstrokemanagement.Whiletraditionalriskfactorssuchashypertension,diabetes,andsmokingremainsignificant,newriskfactorssuchasairpollutionandpoorsleepqualityhaveemer

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論