2023年安徽省蚌埠市第一中學(xué)數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第1頁
2023年安徽省蚌埠市第一中學(xué)數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第2頁
2023年安徽省蚌埠市第一中學(xué)數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第3頁
2023年安徽省蚌埠市第一中學(xué)數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第4頁
2023年安徽省蚌埠市第一中學(xué)數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的頂點為坐標(biāo)原點,始邊與軸的非負(fù)半軸重合,終邊上有兩點,,且,則A. B. C. D.2.點是空間直角坐標(biāo)系中的一點,過點作平面的垂線,垂足為,則點的坐標(biāo)為()A.(1,0,0) B. C. D.3.在中,根據(jù)下列條件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,4.在中,若則等于()A. B. C. D.5.函數(shù)的最大值為()A. B. C. D.6.如果,且,那么下列不等式成立的是()A. B. C. D.7.函數(shù)的簡圖是()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.210.若將函數(shù)的圖象向右平移個單位后,所得圖象對應(yīng)的函數(shù)為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,且,點在圓上,則等于.12.在中,已知,,,則角__________.13.已知一組數(shù)據(jù),,,的方差為,則這組數(shù)據(jù),,,的方差為______.14.已知函數(shù)分別由下表給出:123211123321則當(dāng)時,_____________.15.在中,內(nèi)角,,的對邊分別為,,.若,,成等比數(shù)列,且,則________.16.?dāng)?shù)列的通項,前項和為,則____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱柱中,、分別是棱,的中點,求證:(1)平面;(2)平面平面.18.設(shè)數(shù)列的前項和.已知.(1)求數(shù)列的通項公式;(2)是否對一切正整數(shù),有?說明理由.19.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;(3)設(shè),記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.20.如圖,四棱錐,平面ABCD,四邊形ABCD是直角梯形,,,,E為PB中點.(1)求證:平面PCD;(2)求證:.21.已知函數(shù),.(1)求解不等式;(2)若,求的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

首先根據(jù)兩點都在角的終邊上,得到,利用,利用倍角公式以及余弦函數(shù)的定義式,求得,從而得到,再結(jié)合,從而得到,從而確定選項.【詳解】由三點共線,從而得到,因為,解得,即,所以,故選B.【點睛】該題考查的是有關(guān)角的終邊上點的縱坐標(biāo)的差值的問題,涉及到的知識點有共線的點的坐標(biāo)的關(guān)系,余弦的倍角公式,余弦函數(shù)的定義式,根據(jù)題中的條件,得到相應(yīng)的等量關(guān)系式,從而求得結(jié)果.2、B【解析】

根據(jù)空間直角坐標(biāo)系的坐標(biāo)關(guān)系,即可求得點的坐標(biāo).【詳解】空間直角坐標(biāo)系中點過點作平面的垂線,垂足為,可知故選:B【點睛】本題考查了空間直角坐標(biāo)系及坐標(biāo)關(guān)系,屬于基礎(chǔ)題.3、D【解析】

根據(jù)三角形解的個數(shù)的判斷條件得出各選項中對應(yīng)的解的個數(shù),于此可得出正確選項.【詳解】對于A選項,,,此時,無解;對于B選項,,,此時,有兩解;對于C選項,,則為最大角,由于,此時,無解;對于D選項,,且,此時,有且只有一解.故選D.【點睛】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形個數(shù)的判斷條件,考查推理能力,屬于中等題.4、D【解析】

由正弦定理,求得,再由,且,即可求解,得到答案.【詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、D【解析】

令,根據(jù)正弦型函數(shù)的性質(zhì)可得,那么,可將問題轉(zhuǎn)化為二次函數(shù)在定區(qū)間上的最值問題.【詳解】由題意,令,可得,,∴,∴原函數(shù)的值域與函數(shù)的值域相同.∵函數(shù)圖象的對稱軸為,,取得最大值為.故選:D.【點睛】本題考查三角函數(shù)中的恒等變換、函數(shù)的值域,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意換元法的使用,將問題轉(zhuǎn)化為二次函數(shù)的值域問題.6、D【解析】

由,且,可得.再利用不等式的基本性質(zhì)即可得出,.【詳解】,且,.,,因此.故選:.【點睛】本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.7、D【解析】

變形為,求出周期排除兩個選項,再由函數(shù)值正負(fù)排除一個,最后一個為正確選項.【詳解】函數(shù)的周期是,排除AB,又時,,排除C.只有D滿足.故選:D.【點睛】本題考查由函數(shù)解析式選圖象,可通過研究函數(shù)的性質(zhì)如單調(diào)性、奇偶性、周期性、對稱性等排除某些選項,還可求出特殊值,特殊點,函數(shù)值的正負(fù),函數(shù)值的變化趨勢排除一些選項,從而得出正確選項.8、C【解析】

通過三視圖可以判斷這一個是半個圓柱與半個圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個組合體的體積.【詳解】該幾何體為半個圓柱與半個圓錐形成的組合體,故,故選C.【點睛】本題考查了利用三視圖求組合體圖形的體積,考查了運算能力和空間想象能力.9、B【解析】

根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問題.【詳解】不等式組確定的可行域如下圖所示:因為可化簡為與直線平行,且其在軸的截距與成正比關(guān)系,故當(dāng)且僅當(dāng)目標(biāo)函數(shù)經(jīng)過和的交點時,取得最小值,將點的坐標(biāo)代入目標(biāo)函數(shù)可得.故選:B.【點睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎(chǔ)題,注意數(shù)形結(jié)合即可.10、B【解析】

根據(jù)正弦型函數(shù)的圖象平移規(guī)律計算即可.【詳解】.故選:B.【點睛】本題考查三角函數(shù)圖象的平移變化,考查對基本知識的理解和掌握,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:因為且在圓上,所以,解得,所以.考點:向量運算.【思路點晴】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運算公式,涉及幾何圖形的問題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡的妙用.利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問題、線段長問題及垂直問題轉(zhuǎn)化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).12、【解析】

先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.13、【解析】

利用方差的性質(zhì)直接求解.【詳解】一組數(shù)據(jù),,,的方差為5,這組數(shù)據(jù),,,的方差為:.【點睛】本題考查方差的性質(zhì)應(yīng)用。若的方差為,則的方差為。14、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復(fù)合函數(shù)值求參數(shù),換元法是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

A,B,C是三角形內(nèi)角,那么,代入等式中,進(jìn)行化簡可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因為,所以,所以.因為,,成等比數(shù)列,所以,所以,則,整理得,解得.【點睛】本題考查正弦定理和等比數(shù)列運用,有一定的綜合性.16、7【解析】

根據(jù)數(shù)列的通項公式,求得數(shù)列的周期為4,利用規(guī)律計算,即可求解.【詳解】由題意,數(shù)列的通項,可得,,得到數(shù)列是以4項為周期的形式,所以=.故答案為:7.【點睛】本題主要考查了數(shù)列的求和問題,其中解答中根據(jù)數(shù)列的通項公式求得數(shù)列的周期,以及各項的變化規(guī)律是解答的關(guān)鍵,屬于基礎(chǔ)題,著重考查了.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)見證明【解析】

(1)設(shè)與的交點為,連結(jié),證明,再由線面平行的判定可得平面;(2)由為線段的中點,點是的中點,證得四邊形為平行四邊形,得到,進(jìn)一步得到平面.再由平面,結(jié)合面面平行的判定可得平面平面.【詳解】證明:(1)設(shè)與的交點為,連結(jié),∵四邊形為平行四邊形,∴為中點,又是的中點,∴是三角形的中位線,則,又∵平面,平面,∴平面;(2)∵為線段的中點,點是的中點,∴且,則四邊形為平行四邊形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【點睛】本題考查直線與平面,平面與平面平行的判定,考查空間想象能力與思維能力,是中檔題.18、(1);(2)對一切正整數(shù),有.【解析】

(1)運用數(shù)列的遞推式,結(jié)合等差數(shù)列的定義和通項公式,可得所求;(2)對一切正整數(shù)n,有,考慮當(dāng)時,,再由裂項相消求和,即可得證。【詳解】(1)當(dāng)時,兩式做差得,,當(dāng)時,上式顯然成立,。(2)證明:當(dāng)時,可得由可得即有<則當(dāng)時,不等式成立。檢驗時,不等式也成立,綜上對一切正整數(shù)n,有?!军c睛】本題考查數(shù)列遞推式,考查數(shù)列求和,考查裂項法的運用,確定數(shù)列的通項是關(guān)鍵.19、(1);(2)m的取值集合或}(3)存在,【解析】

(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實數(shù)k的方程,解方程即可,注意驗證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號即可;(3)可得,即可得:即可.【詳解】(1)由奇函數(shù)的性質(zhì)可得:,解方程可得:.此時,滿足,即為奇函數(shù).的解析式為:;(2)函數(shù)的解析式為:,結(jié)合指數(shù)函數(shù)的性質(zhì)可得:在區(qū)間內(nèi)只有一個解.即:在區(qū)間內(nèi)只有一個解.(i)當(dāng)時,,符合題意.(ii)當(dāng)時,只需且時,,此時,符合題意綜上,m的取值集合或}(3)函數(shù)為奇函數(shù)關(guān)于對稱又當(dāng)且僅當(dāng)時等號成立所以存在正整數(shù)n,使不得式對一切均成立.【點睛】本題考查了復(fù)合型指數(shù)函數(shù)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于難題.20、(1)證明見詳解;(2)證明見詳解【解析】

(1)取的中點,證出,再利用線面平行的判定定理即可證出.(2)利用線面垂直的判定定理可證出平面,再根據(jù)線面垂直的定義即可證出.【詳解】如圖,取的中點,連接,E為PB中點,,且,又,,,,為平行四邊形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因為,,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論