版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)等比數(shù)列的前項(xiàng)和為,若,,則()A.63 B.62 C.61 D.602.若正方體的棱長為,點(diǎn),在上運(yùn)動(dòng),,四面體的體積為,則()A. B. C. D.3.在中,若,,,則等于()A.3 B.4 C.5 D.64.已知函數(shù)的最大值為,最小值為,則的值為()A. B. C. D.5.已知兩個(gè)球的表面積之比為,則這兩個(gè)球的體積之比為()A. B. C. D.6.己知函數(shù)(,,,)的圖象(部分)如圖所示,則的解析式是()A. B.C. D.7.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.8.下列關(guān)于函數(shù)()的敘述,正確的是()A.在上單調(diào)遞增,在上單調(diào)遞減B.值域?yàn)镃.圖像關(guān)于點(diǎn)中心對(duì)稱D.不等式的解集為9.以點(diǎn)為圓心,且經(jīng)過點(diǎn)的圓的方程為()A. B.C. D.10.下列各角中,與126°角終邊相同的角是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域?yàn)開___________.12.某公司有大量客戶,且不同齡段客戶對(duì)其服務(wù)的評(píng)價(jià)有較大差異.為了解客戶的評(píng)價(jià),該公司準(zhǔn)備進(jìn)行抽樣調(diào)查,可供選擇的抽樣方法有簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,則最合適的抽樣方法是________.13.在中,內(nèi)角,,的對(duì)邊分別為,,.若,,成等比數(shù)列,且,則________.14.函數(shù)的部分圖象如圖所示,則函數(shù)的解析式為______.15.在銳角中,則的值等于.16.將正整數(shù)按下圖方式排列,2019出現(xiàn)在第行第列,則______;12345678910111213141516………三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.記為等差數(shù)列的前項(xiàng)和,已知,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)求,并求的最小值.18.已知數(shù)列的前n項(xiàng)和為(),且滿足,().(1)求證是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式.19.在中,已知,是邊上的一點(diǎn),,,.(1)求的大??;(2)求的長.20.在平面直角坐標(biāo)系中,已知向量,,.(1)若,求的值;(2)若與的夾角為,求的值.21.已知向量且,(1)求向量與的夾角;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計(jì)算可得.【詳解】因?yàn)?,,成等比?shù)列,即3,12,成等比數(shù)列,所以,解得.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)與前項(xiàng)和的計(jì)算,考查運(yùn)算求解能力.2、C【解析】
由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長為,點(diǎn),在上運(yùn)動(dòng),,如圖所示:點(diǎn)到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點(diǎn)睛】本題考查了正方體的性質(zhì),等體積法求三棱錐的體積,屬于基礎(chǔ)題.3、D【解析】
直接運(yùn)用正弦定理求解即可.【詳解】由正弦定理可知中:,故本題選D.【點(diǎn)睛】本題考查了正弦定理的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.4、B【解析】由解得為函數(shù)的定義域.令,消去得,圖像為橢圓的一部分,如下圖所示.,即直線,由圖可知,截距在點(diǎn)處取得最小值,在與橢圓相切的點(diǎn)處取得最大值.而,故最小值為.聯(lián)立,消去得,其判別式為零,即,解得(負(fù)根舍去),即,故.【點(diǎn)睛】本題主要考查含有兩個(gè)根號(hào)的函數(shù)怎樣求最大值和最小值.先用換元法,將原函數(shù)改寫成為一次函數(shù)的形式.然后利用和的關(guān)系,得到的可行域,本題中可行域?yàn)闄E圓在第一象限的部分.然后利用,用截距的最大值和最小值來求函數(shù)的最大值和最小值.5、D【解析】
根據(jù)兩個(gè)球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點(diǎn)睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎(chǔ)題.6、C【解析】
根據(jù)圖象可知,利用正弦型函數(shù)可求得;根據(jù)最大值和最小值可確定,利用及可求得,從而得到函數(shù)解析式.【詳解】由圖象可知,的最小正周期:又又,且,,即,本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)圖象求解三角函數(shù)解析式的問題,關(guān)鍵是能夠明確由最大值和最小值確定;由周期確定;通常通過最值點(diǎn)來進(jìn)行求解,屬于??碱}型.7、A【解析】
易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺(tái),再根據(jù)圓臺(tái)的體積公式求解即可.【詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺(tái),圓臺(tái)的高,上底面圓半徑,下底面圓半徑.故該圓臺(tái)的體積故選:A【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)體中圓臺(tái)的體積公式,屬于基礎(chǔ)題.8、D【解析】
運(yùn)用正弦函數(shù)的一個(gè)周期的圖象,結(jié)合單調(diào)性、值域和對(duì)稱中心,以及不等式的解集,可得所求結(jié)論.【詳解】函數(shù)(),在,單調(diào)遞增,在上單調(diào)遞減;值域?yàn)椋粓D象關(guān)于點(diǎn)對(duì)稱;由可得,解得:.故選:D.【點(diǎn)睛】本題考查三角函數(shù)的圖象和性質(zhì),考查邏輯思維能力和運(yùn)算能力,屬于??碱}.9、B【解析】
通過圓心設(shè)圓的標(biāo)準(zhǔn)方程,代入點(diǎn)即可.【詳解】設(shè)圓的方程為:,又經(jīng)過點(diǎn),所以,即,所以圓的方程:.故選B【點(diǎn)睛】此題考查圓的標(biāo)準(zhǔn)方程,記住標(biāo)準(zhǔn)方程的一般設(shè)法,代入數(shù)據(jù)即可求解,屬于簡(jiǎn)單題目.10、B【解析】
寫出與126°的角終邊相同的角的集合,取k=1得答案.【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【點(diǎn)睛】本題考查終邊相同角的計(jì)算,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先將和分別解出來,然后求交集即可【詳解】要使,則有且由得由得因?yàn)樗栽瘮?shù)的定義域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】解三角不等式的方法:1.在單位圓中利用三角函數(shù)線,2.利用三角函數(shù)的圖像12、分層抽樣.【解析】分析:由題可知滿足分層抽樣特點(diǎn)詳解:由于從不同齡段客戶中抽取,故采用分層抽樣故答案為分層抽樣.點(diǎn)睛:本題主要考查簡(jiǎn)單隨機(jī)抽樣,屬于基礎(chǔ)題.13、【解析】
A,B,C是三角形內(nèi)角,那么,代入等式中,進(jìn)行化簡(jiǎn)可得角A,C的關(guān)系,再由,,成等比數(shù)列,根據(jù)正弦定理,將邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,兩式相減可得關(guān)于的方程,解方程即得.【詳解】因?yàn)?,所以,所?因?yàn)?,,成等比?shù)列,所以,所以,則,整理得,解得.【點(diǎn)睛】本題考查正弦定理和等比數(shù)列運(yùn)用,有一定的綜合性.14、【解析】
根據(jù)三角函數(shù)圖象依次求得的值.【詳解】由圖象可知,,所以,故,將點(diǎn)代入上式得,因?yàn)?,所?故.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)的圖象求三角函數(shù)的解析式,屬于基礎(chǔ)題.15、2【解析】設(shè)由正弦定理得16、128【解析】
觀察數(shù)陣可知:前行一共有個(gè)數(shù),且第行的最后一個(gè)數(shù)為,且第行有個(gè)數(shù),由此可推斷出所在的位置.【詳解】因?yàn)榍靶幸还灿袀€(gè)數(shù),且第行的最后一個(gè)數(shù)為,又因?yàn)?,所以在第行,且?5行最后數(shù)為,又因?yàn)榈谛杏袀€(gè)數(shù),,所以在第列,所以.故答案為:.【點(diǎn)睛】本題考查數(shù)列在數(shù)陣中的應(yīng)用,著重考查推理能力,難度一般.分析數(shù)列在數(shù)陣中的應(yīng)用問題,可從以下點(diǎn)分析問題:觀察每一行數(shù)據(jù)個(gè)數(shù)與行號(hào)關(guān)系,同時(shí)注意每一行開始的數(shù)據(jù)或結(jié)尾數(shù)據(jù),所有行數(shù)據(jù)的總個(gè)數(shù),注意等差數(shù)列的求和公式的運(yùn)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2),最小值為?1.【解析】
(Ⅰ)根據(jù)等差數(shù)列的求和公式,求得公差d,即可表示出的通項(xiàng)公式;(Ⅱ)根據(jù)等差數(shù)列的求和公式得Sn=n2-8n,根據(jù)二次函數(shù)的性質(zhì),可得Sn的最小值.【詳解】(I)設(shè)的公差為d,由題意得.由得d=2.所以的通項(xiàng)公式為.(II)由(I)得.所以當(dāng)n=4時(shí),取得最小值,最小值為?1.【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)的和公式,考查了等差數(shù)列前n項(xiàng)和的最值問題;求等差數(shù)列前n項(xiàng)和的最值有兩種方法:①函數(shù)法,②鄰項(xiàng)變號(hào)法.18、(1)證明見解析;(2).【解析】
(1)當(dāng)時(shí),由代入,化簡(jiǎn)得出,由此可證明出數(shù)列是等差數(shù)列;(2)求出數(shù)列的通項(xiàng)公式,可得出,由可得出在時(shí)的表達(dá)式,再對(duì)是否滿足進(jìn)行檢驗(yàn),可得出數(shù)列的通項(xiàng)公式.【詳解】(1)當(dāng)時(shí),,,即,,等式兩邊同時(shí)除以得,即,因此,數(shù)列是等差數(shù)列;(2)由(1)知,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,,則.,得.不適合.綜上所述,.【點(diǎn)睛】本題考查等差數(shù)列的證明,同時(shí)也考查了數(shù)列通項(xiàng)公式的求解,解題的關(guān)鍵就是利用關(guān)系式進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.19、(1);(2).【解析】試題分析:(1)在中,由余弦定理得,最后根據(jù)的值及,即可得到的值;(2)在中,由正弦定理得到,從而代入數(shù)據(jù)進(jìn)行運(yùn)算即可得到的長.試題解析:(1)在中,,由余弦定理可得又因?yàn)?,所以?)在中,由正弦定理可得所以.考點(diǎn):1.正弦定理;2.余弦定理;3.解斜三角形.20、(1)1(2)【解析】
(1).若,則,結(jié)合三角函數(shù)的關(guān)系式即可求的值;
(2).若與的夾角為,利用向量的數(shù)量積的坐標(biāo)公式進(jìn)行求解即可求的值.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年運(yùn)輸代理服務(wù)合作協(xié)議書
- 2024施工合同煙囪施工能源節(jié)約合同范本3篇
- 二零二五年度VIP客戶高端酒水定制服務(wù)協(xié)議3篇
- 2025年度文化藝術(shù)交流與演出推廣合同3篇
- 二零二五年度WPS辦公借款合同法律適用指南2篇
- 2025年重油催化裂化催化劑合作協(xié)議書
- 2025版勞動(dòng)合同補(bǔ)充協(xié)議:?jiǎn)T工創(chuàng)新成果分享與激勵(lì)機(jī)制3篇
- 2024年電氣設(shè)備質(zhì)量保證合同
- 2025年家用空調(diào)租賃服務(wù)合同示范文本3篇
- 2024年荒山綠化承包項(xiàng)目協(xié)議版B版
- 新版出口報(bào)關(guān)單模板
- 北京市西城區(qū)師范學(xué)校附屬小學(xué)北師大版數(shù)學(xué)六年級(jí)上冊(cè)期末試題測(cè)試題及答案
- 杭州工地?cái)?shù)字化施工方案
- 騰訊云大數(shù)據(jù)云平臺(tái)TBDS 產(chǎn)品白皮書
- 網(wǎng)球國家二級(jí)裁判培訓(xùn)講座
- 中南大學(xué)軍事理論學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 員工工資條模板
- 缺點(diǎn)列舉法課件
- 籃球?qū)m?xiàng)體育課教學(xué)大綱、教學(xué)計(jì)劃
- 創(chuàng)新與創(chuàng)業(yè)管理-四川大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 執(zhí)行依據(jù)主文范文(通用4篇)
評(píng)論
0/150
提交評(píng)論