2023屆福建省廈門工學院附屬學校數(shù)學高一下期末監(jiān)測模擬試題含解析_第1頁
2023屆福建省廈門工學院附屬學校數(shù)學高一下期末監(jiān)測模擬試題含解析_第2頁
2023屆福建省廈門工學院附屬學校數(shù)學高一下期末監(jiān)測模擬試題含解析_第3頁
2023屆福建省廈門工學院附屬學校數(shù)學高一下期末監(jiān)測模擬試題含解析_第4頁
2023屆福建省廈門工學院附屬學校數(shù)學高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.42.數(shù)列的通項,其前項之和為,則在平面直角坐標系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.93.湖南衛(wèi)視《爸爸去哪兒》節(jié)目組為熱心觀眾給予獎勵,要從2014名小觀眾中抽取50名幸運小觀眾.先用簡單隨機抽樣從2014人中剔除14人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2014人中,每個人被抽取的可能性()A.均不相等 B.不全相等C.都相等,且為 D.都相等,且為4.若,直線的傾斜角等于()A. B. C. D.5.若點在點的北偏東70°,點在點的南偏東30°,且,則點在點的()方向上.A.北偏東20° B.北偏東30° C.北偏西30° D.北偏西15°6.在△ABC中,內角A、B、C所對的邊分別為a、b、c,若,則()A. B. C. D.7.已知集合,則().A. B. C. D.8.設是兩條不同的直線,是兩個不同的平面,則下列敘述正確的是()①若,則;②若,則;③若,則;④若,則.A.①② B.③④ C.①③ D.②④9.在邊長為的正方形內有一個半徑為1的圓,向正方形中隨機扔一粒豆子(忽略大小,視為質點),若它落在該圓內的概率為,則用隨機模擬的方法得到的圓周率的近似值為()A. B. C. D.10.已知x,y滿足約束條件,則的最大值是()A.-1 B.-2 C.-5 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.一組數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是__________.12.已知函數(shù),(常數(shù)、),若當且僅當時,函數(shù)取得最大值1,則實數(shù)的數(shù)值為______.13.________14.已知無窮等比數(shù)列的前項和,其中為常數(shù),則________15.已知圓上有兩個點到直線的距離為3,則半徑的取值范圍是________16.已知,且,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,當甲船位于處時獲悉,在其正東方向相距20海里的處有一艘漁船遇險等待營救.甲船立即前往救援,同時把消息告知在甲船的南偏西30°,相距10海里處的乙船,試問乙船應朝北偏東多少度的方向沿直線前往處救援?(角度精確到1°,參考數(shù)據(jù):,)18.已知數(shù)列是遞增的等比數(shù)列,且(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設為數(shù)列的前n項和,,求數(shù)列的前n項和.19.在中,內角、、所對的邊分別為,,,且滿足.(1)求角的大小;(2)若,是方程的兩根,求的值.20.已知a,b,c分別為ΔABC三個內角A,B,C的對邊,且.(1)求角A的大小;(2)若,且ΔABC的面積為,求a的值;(3)若,求的范圍.21.在ΔABC中,角A,B,C的對邊分別為a,b,c,且滿足3(b(1)求角B的大??;(2)若ΔABC的面積為32,B是鈍角,求b

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應選A.2、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點:數(shù)列求和及直線方程.3、C【解析】由題意可得,先用簡單隨機抽樣的方法從2014人中剔除14人,則剩下的再分組,按系統(tǒng)抽樣抽取.在剔除過程中,每個個體被剔除的機會相等,所以每個個體被抽到的機會相等,均為故選C4、A【解析】

根據(jù)以及可求出直線的傾斜角.【詳解】,,且直線的斜率為,因此,直線的傾斜角為.故選:A.【點睛】本題考查直線傾斜角的計算,要熟悉斜率與傾斜角之間的關系,還要根據(jù)傾斜角的取值范圍來求解,考查計算能力,屬于基礎題.5、A【解析】

作出方位角,根據(jù)等腰三角形的性質可得.【詳解】如圖,,,則,∵,∴,而,∴∴點在點的北偏東20°方向上.故選:A.【點睛】本題考查方位角概念,掌握方位角的定義是解題基礎.方位角是以南北向為基礎,北偏東,北偏西,南偏東,南偏西等等.6、A【解析】

由正弦定理可得,再結合求解即可.【詳解】解:由,又,則,由,則,故選:A.【點睛】本題考查了正弦定理,屬基礎題.7、B【解析】

求解一元二次不等式的解集,化簡集合的表示,最后運用集合交集的定義,結合數(shù)軸求出.【詳解】因為,所以,故本題選B.【點睛】本題考查了一元二次不等式的解法,考查了集合交集的運算,正確求解一元二次不等式的解集、運用數(shù)軸是解題的關鍵.8、D【解析】可以線在平面內,③可以是兩相交平面內與交線平行的直線,②對④對,故選D.9、A【解析】

通過幾何概型可得答案.【詳解】由幾何概型可知,則.【點睛】本題主要考查幾何概型的相關計算,難度中等.10、A【解析】根據(jù)題意作出約束條件確定的可行域,如下圖:令,可知在圖中處,取到最大值-1,故選A.考點:本題主要考查了簡單的線性規(guī)劃.二、填空題:本大題共6小題,每小題5分,共30分。11、6【解析】

由題得x=7,再利用中位數(shù)的公式求這組數(shù)據(jù)的中位數(shù).【詳解】因為數(shù)據(jù)2,4,5,,7,9的眾數(shù)是7,所以,則這組數(shù)據(jù)的中位數(shù)是.故答案為6【點睛】本題主要考查眾數(shù)的概念和中位數(shù)的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.12、-1【解析】

先將函數(shù)轉化成同名三角函數(shù),再結合二次函數(shù)性質進行求解即可【詳解】令,,對稱軸為;當時,時函數(shù)值最大,,解得;當時,對稱軸為,函數(shù)在時取到最大值,與題設矛盾;當時,時函數(shù)值最大,,解得;故的數(shù)值為:-1故答案為:-1【點睛】本題考查換元法在三角函數(shù)中的應用,分類討論求解函數(shù)最值,屬于中檔題13、【解析】

根據(jù)極限的運算法則,合理化簡、運算,即可求解.【詳解】由極限的運算,可得.故答案為:【點睛】本題主要考查了極限的運算法則的應用,其中解答熟記極限的運算法則,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、1【解析】

根據(jù)等比數(shù)列的前項和公式,求得,再結合極限的運算,即可求解.【詳解】由題意,等比數(shù)列前項和公式,可得,又由,所以,所以,可得.故答案為:.【點睛】本題主要考查了等比數(shù)列的前項和公式的應用,以及熟練的極限的計算,其中解答中根據(jù)等比數(shù)列的前項和公式,求得的值,結合極限的運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】

由圓上有兩個點到直線的距離為3,先求出圓心到直線的距離,得到不等關系式,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,又因為圓上有兩個點到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點睛】本題主要考查了直線與圓的位置關系的應用,其中解答中合理應用圓心到直線的距離,結合圖象得到半徑的不等關系式是解答的關鍵,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于中檔試題.16、【解析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、乙船應朝北偏東約的方向沿直線前往處救援.【解析】

根據(jù)題意,求得,利用余弦定理求得的長,在中利用正弦定理求得,根據(jù)題目所給參考數(shù)據(jù)求得乙船行駛方向.【詳解】解:由已知,則,在中,由余弦定理,得,∴海里.在中,由正弦定理,有,解得,則,故乙船應朝北偏東約的方向沿直線前往處救援.【點睛】本小題主要考查解三角形在實際生活中的應用,考查正弦定理、余弦定理解三角形,屬于基礎題.18、(Ⅰ)(Ⅱ)【解析】試題分析:(1)設等比數(shù)列的公比為q,,根據(jù)已知由等比數(shù)列的性質可得,聯(lián)立解方程再由數(shù)列為遞增數(shù)列可得則通項公式可得(2)根據(jù)等比數(shù)列的求和公式,有所以,裂項求和即可試題解析:(1)設等比數(shù)列的公比為q,所以有聯(lián)立兩式可得或者又因為數(shù)列為遞增數(shù)列,所以q>1,所以數(shù)列的通項公式為(2)根據(jù)等比數(shù)列的求和公式,有所以所以考點:等比數(shù)列的通項公式和性質,數(shù)列求和19、(1);(2)【解析】

(1)由,可得:,再用正弦定理可得:,從而求得的值;(2)根據(jù)題意由韋達定理和余弦定理列出關于的方程求解即可.【詳解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的兩根,得,利用余弦定理得而,可得.【點睛】本題考查了三角形的正余弦定理的應用,化簡與求值,屬于基礎題.20、(1)(2)(3)【解析】

(1)利用正弦定理化簡即得A的大?。唬?)先求出bc,b+c的值,再利用余弦定理求出a的值;(3)先求出,再利用三角函數(shù)的性質求b+c的范圍.【詳解】(1)由正弦定理得,,即...(2)由可得.∴由余弦定理得:(3)由正弦定理得若,則因為所以所以.所以的范圍【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)最值的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.21、(1)B=π3或2π【解析】

(1)由正弦定理和三角恒等變換的公式,化簡得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結合正弦定理得:3(即3s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論