2022-2023學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第1頁
2022-2023學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第2頁
2022-2023學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第3頁
2022-2023學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第4頁
2022-2023學(xué)年安徽省安慶一中安師大附中銅陵一中馬鞍山二中高一數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若變量,滿足約束條件,且的最大值為,最小值為,則的值是A. B.C. D.2.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐P﹣ABCD為陽馬,側(cè)棱PA⊥底面ABCD,PA=AB=AD,E為棱PA的中點,則異面直線AB與CE所成角的正弦值為()A. B. C. D.3.若正實數(shù)滿足,則的最小值為A. B. C. D.4.下圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件)若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則和的值分別為A.5,5 B.3,5 C.3,7 D.5,75.已知數(shù)列滿足,(且),且數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,又,則A. B. C. D.6.過△ABC的重心任作一直線分別交邊AB,AC于點D、E.若,,,則的最小值為()A.4 B.3 C.2 D.17.在中,內(nèi)角所對的邊分別為,若,且,則的形狀是()A.銳角三角形 B.鈍角三角形 C.等腰直角三角形 D.不確定8.直線的傾斜角為()A. B. C. D.9.在平面直角坐標(biāo)系中,直線與x、y軸分別交于點、,記以點為圓心,半徑為r的圓與三角形的邊的交點個數(shù)為M.對于下列說法:①當(dāng)時,若,則;②當(dāng)時,若,則;③當(dāng)時,M不可能等于3;④M的值可以為0,1,2,3,4,5.其中正確的個數(shù)為()A.1 B.2 C.3 D.410.下列函數(shù)中,在區(qū)間上為增函數(shù)的是().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角、、所對的邊為、、,若,,,則角________.12.在中,為上的一點,且,是的中點,過點的直線,是直線上的動點,,則_________.13.已知平行四邊形的周長為,,則平行四邊形的面積是_______14.在數(shù)列中,若,(),則________15.設(shè)為數(shù)列的前項和,若,則數(shù)列的通項公式為__________.16.命題“,”是________命題(選填“真”或“假”).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,,分別為,的中點,且.(1)證明:平面;(2)若平面平面,證明:.18.已知向量,,且,.(1)求函數(shù)和的解析式;(2)求函數(shù)的遞增區(qū)間;(3)若函數(shù)的最小值為,求λ值.19.已知.(1)化簡;(2)若,且為第一象限角,求的值.20.已知圓以原點為圓心且與直線相切.(1)求圓的方程;(2)若直線與圓交于、兩點,過、兩點分別作直線的垂線交軸于、兩點,求線段的長.21.年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀(jì)念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學(xué)課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:小區(qū)家庭月用水量小區(qū)家庭月用水量(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由,由,當(dāng)最大時,最小,此時最小,,故選C.【點睛】本題除了做約束條件的可行域再平移求得正解這種常規(guī)解法之外,也可以采用構(gòu)造法解題,這就要求考生要有較強的觀察能力,或者采用設(shè)元求出構(gòu)造所學(xué)的系數(shù).2、B【解析】

由異面直線所成角的定義及求法,得到為所求,連接,由為直角三角形,即可求解.【詳解】在四棱錐中,,可得即為異面直線與所成角,連接,則為直角三角形,不妨設(shè),則,所以,故選B.【點睛】本題主要考查了異面直線所成角的作法及求法,其中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解析】

將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當(dāng)且僅當(dāng),取等號,故選D.【點睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).4、B【解析】

利用莖葉圖、中位數(shù)、平均數(shù)的性質(zhì)直接求解.【詳解】由莖葉圖得:∵甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件)若這兩組數(shù)據(jù)的中位數(shù)相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故選B.【點睛】本題考查實數(shù)值的求法,考查莖葉圖、中位數(shù)、平均數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5、A【解析】

根據(jù)已知條件可以推出,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,因此去絕對值可以得到,,利用累加法繼而算出結(jié)果.【詳解】,即,或,又,.?dāng)?shù)列為遞增數(shù)列,數(shù)列為遞減數(shù)列,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,..故選A.【點睛】本題主要考查了通過遞推式求數(shù)列的通項公式,數(shù)列單調(diào)性的應(yīng)用,以及并項求和法的應(yīng)用。6、B【解析】

利用重心以及向量的三點共線的結(jié)論得到的關(guān)系式,再利用基本不等式求最小值.【詳解】設(shè)重心為,因為重心分中線的比為,則有,,則,又因為三點共線,所以,則,取等號時.故選B.【點睛】(1)三角形的重心是三條中線的交點,且重心分中線的比例為;(2)運用基本不等式時,注意取等號時條件是否成立.7、C【解析】

通過正弦定理可得可得三角形為等腰,再由可知三角形是直角,于是得到答案.【詳解】因為,所以,所以,即.因為,所以,又因為,所以,所以,故的形狀是等腰直角三角形.【點睛】本題主要考查利用正弦定理判斷三角形形狀,意在考查學(xué)生的分析能力,計算能力,難度中等.8、C【解析】

由直線方程求出直線的斜率,即得傾斜角的正切值,從而求出傾斜角.【詳解】設(shè)直線的傾斜角為,由,得:,故中直線的斜率,∵,∴;故選C.【點睛】本題考查了直線的傾斜角與斜率的問題,是基礎(chǔ)題.9、B【解析】

作出直線,可得,,,分別考慮圓心和半徑的變化,結(jié)合圖形,即可得到所求結(jié)論.【詳解】作出直線,可得,,,①當(dāng)時,若,當(dāng)圓與直線相切,可得;當(dāng)圓經(jīng)過點,即,則或,故①錯誤;②當(dāng)時,若,圓,當(dāng)圓經(jīng)過O時,,交點個數(shù)為2,時,交點個數(shù)為1,則,故②正確;③當(dāng)時,圓,隨著的變化可得交點個數(shù)為1,2,0,不可能等于3,故③正確;④的值可以為0,1,2,3,4,不可以為5,故④錯誤.故選:B.【點睛】本題考查命題的真假判斷與應(yīng)用,考查直線和圓的位置關(guān)系,考查分析能力和計算能力.10、B【解析】試題分析:根據(jù)初等函數(shù)的圖象,可得函數(shù)在區(qū)間(0,1)上的單調(diào)性,從而可得結(jié)論.解:由題意,A的底數(shù)大于0小于1、C是圖象在一、三象限的單調(diào)減函數(shù)、D是余弦函數(shù),,在(0,+∞)上不單調(diào),B的底數(shù)大于1,在(0,+∞)上單調(diào)增,故在區(qū)間(0,1)上是增函數(shù),故選B考點:函數(shù)的單調(diào)性點評:本題考查函數(shù)的單調(diào)性,掌握初等函數(shù)的圖象與性質(zhì)是關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

利用余弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應(yīng)用和反三角函數(shù),解題時要充分結(jié)合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.12、【解析】

用表示出,由對應(yīng)相等即可得出.【詳解】因為,所以解得得.【點睛】本題主要考查了平面向量的基本定理,以及向量的三角形法則,平面上任意不共線的一組向量可以作為一組基底.13、【解析】

設(shè),根據(jù)條件可以求出,兩邊平方可以得到關(guān)系式,由余弦定理可以表示出,把代入得到的關(guān)系式,聯(lián)立求出的值,過作垂直于,設(shè),則可以表示,利用勾股定理,求出的值,確定長,即求出平行四邊形的面積【詳解】設(shè)又,由余弦定理將代入,得到將(2)代入(1)得到可以解得:(另一種情況不影響結(jié)果),過作垂直于,設(shè),則,所以填寫【點睛】幾何題如果關(guān)系量理清不了,可以嘗試作圖,引入相鄰邊的參數(shù),通過方程把參數(shù)求出,平行四邊形問題可以通過轉(zhuǎn)化變?yōu)槿切螁栴},進(jìn)而把問題簡單化.14、【解析】

由題意,得到數(shù)列表示首項為1,公差為2的等差數(shù)列,結(jié)合等差數(shù)列的通項公式,即可求解.【詳解】由題意,數(shù)列中,滿足,(),即(),所以數(shù)列表示首項為1,公差為2的等差數(shù)列,所以.故答案為:【點睛】本題主要考查了等差數(shù)列的定義和通項公式的應(yīng)用,其中解答中熟記等差數(shù)列的定義,合理利用數(shù)列的通項公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、,【解析】

令時,求出,再令時,求出的值,再檢驗的值是否符合,由此得出數(shù)列的通項公式.【詳解】當(dāng)時,,當(dāng)時,,不合適上式,當(dāng)時,,不合適上式,因此,,.故答案為,.【點睛】本題考查利用前項和求數(shù)列的通項,考查計算能力,屬于中等題.16、真【解析】當(dāng)時,成立,即命題“,”為真命題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)先證明,再證明平面;(2)先證明平面,再證明.【詳解】證明:(1)因為,分別為,的中點,所以.又平面,平面,所以平面.(2)因為,為中點,所以.又平面平面.平面平面,所以平面.又平面,所以.【點睛】本題主要考查空間幾何元素位置關(guān)系的證明,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.18、(1),(2)遞增區(qū)間為,(3)【解析】

(1)根據(jù)向量的數(shù)量積坐標(biāo)運算,以及模長的求解公式,即可求得兩個函數(shù)的解析式;(2)由(1)可得,整理化簡后,將其轉(zhuǎn)化為余弦型三角函數(shù),再求單調(diào)區(qū)間即可;(3)求得的解析式,用換元法,將函數(shù)轉(zhuǎn)化為二次函數(shù),討論二次函數(shù)的最小值,從而求得參數(shù)的值.【詳解】(1),.(2)令,得的遞增區(qū)間為,.(3)∵,∴..當(dāng)時,時,取最小值為-1,這與題設(shè)矛盾.當(dāng)時,時,取最小值,因此,,解得.當(dāng)時,時,取最小值,由,解得,與題設(shè)矛盾.綜上所述,.【點睛】本題主要考查余弦型三角函數(shù)的單調(diào)區(qū)間的求解,含的二次型函數(shù)的最值問題,涉及向量數(shù)量積的運算,模長的求解,以及二次函數(shù)動軸定區(qū)間問題,屬綜合基礎(chǔ)題.19、(1)(2)【解析】

(1)由條件利用誘導(dǎo)公式進(jìn)行化簡所給的式子,即可求得答案;(2)由題意應(yīng)用誘導(dǎo)公式,同角三角函數(shù)的基本關(guān)系求得的值,可得的值,即可求得答案.【詳解】(1)(2)①又②解得:為第一象限角【點睛】本題主要考查了三角函數(shù)化簡求值問題,解題關(guān)鍵是熟練使用誘導(dǎo)公式和同名三角函數(shù)求值的解法,考查了分析能力和計算能力,屬于中檔題.20、(1);(2).【解析】

(1)計算原點到直線的距離,作為圓的半徑,從而可得出圓的方程;(2)計算出圓心到直線的距離,利用勾股定理可計算出,過點作,垂足為,求出直線的傾斜角為,再利用銳角三角函數(shù)的定義可求出.【詳解】(1)把直線化為一般式,即,到直線的距離為,圓的半徑為,圓的方程為;(2)直線的一般方程為,點到直線的距離為,圓的半徑為,則,過點作,垂足為,.又的傾斜角為,,.因此,線段的長為.【點睛】本題考查圓的方程的求解,同時也考查了直線截圓所得弦長的計算,涉及了銳角三角函數(shù)的定義的應(yīng)用,考查計算能力,屬于中等題.21、(1)見解析(2)【解析】

(1)根據(jù)表格中的數(shù)據(jù)繪制出莖葉圖,并結(jié)合莖葉圖中數(shù)據(jù)的分布可比較出兩個小區(qū)居民節(jié)水意識;(2)列舉出所有的基本事件,確定所有的基本事件數(shù),然后確定事件“小區(qū)家庭的用水量低于小區(qū)”所包含的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論