下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
課下能力提高(十一)超幾何散布一、填空題1.盒中有
4個白球,
5個紅球,從中任取
3個球,則拿出
1個白球和
2個紅球的概率是________.2.有10位同學,此中男生6位,女生4位,從中任選3人參加數學比賽.用X表示女生人數,則概率P(X≤2)=________.3.若在甲袋內裝有8個白球,4個紅球,在乙袋內裝有6個白球,6個紅球,今從兩袋內各拿出1個球,設拿出的白球個數為X,則P(X=1)=________.4.某12人的興趣小組中,有5名“三好生”,現從中隨意選6人參加比賽,用X表示33這6人中“三好生”的人數,則當X取________時,對應的概率為576.C125.50張彩票中只有2張中獎票,今從中任取n張,為了使這n張彩票里起碼有一張中獎的概率大于0.5,n起碼為________.二、解答題6.從一副不含大小王的52張撲克牌中隨意抽出5張,求起碼有3張A的概率.7.在10件產品中,有3件一等品,4件二等品,3件三等品,從這10件產品中任取3件,求:拿出的3件產品中一等品件數X的散布列;拿出的3件產品中一等品件數多于二等品件數的概率.8.在一次購物抽獎活動中,假定品,有二等獎獎券3張,每張可獲價值
10張獎券中有一等獎獎券1張,可獲價值10元的獎品,其他6張沒有獎品.
50元的獎顧客甲從10張獎券中隨意抽取1張,求中獎次數X的概率散布.(2)顧客乙從10張獎券中隨意抽取2張,①求顧客乙中獎的概率;②設顧客乙獲取的獎品總價值Y元,求Y的概率散布.答案1.分析:設隨機變量X為抽到白球的個數,X聽從超幾何散布,由公式,得P(X=1)124×1010C4C5=3=84=.9答案:10212.分析:P(X≤2)=P(X=1)+P(X=2)+P(X=0)1221329C4C6C4C6C6==C10+C10+C10.333答案:29301111CC+CC13.分析:(8646PXC12C1221答案:234.分析:由題意可知,X聽從超幾何散布,由概率值中的C5能夠看出“從5名三好生中選用了3名”.答案:35.分析:用X表示中獎票數,1n-12n-2(≥1)=C2C48C2C48n+n>0.5.PXCC5050解得n≥15.答案:156.解:設抽出的5張牌中所包括的A牌的張數為X,則X聽從超幾何散布,其散布列r5-r為(=448,=0,1,2,3,4.所以隨機變量X的概率散布為:)=5PXrC52rX012340514233241P44844844844844855555C52C52C52C52C52所以抽出的5張牌中起碼有3張A的概率為3241(≥3)=(=3)+(448448=4)=5+5≈0.00175.PXPXPXC52C527.解:(1)因為從10件產品中任取3件的結果數為33件,其C10,從10件產品中任取中恰有r件一等品的結果數為r3-r10件產品中任取3件,此中恰有r件一等品37r3-r37的概率為P(X=r)=C103,r=0,1,2,3.所以隨機變量X的散布列是X=r0123P(X=r)72171244040120(2)設“拿出的3件產品中一等品件數多于二等品件數”為事件,“恰巧拿出1件一等A品和2件三等品”為事件A,“恰巧拿出2件一等品”為事件A,“恰巧拿出3件一等品”為12事件A.因為事件A,A,A相互互斥,且A=A∪A∪A,而3123123C31C3237P(A1)=3=,P(A2)=P(X=2)=,101P(A3)=P(X=3)=120,所以拿出的3件產品中一等品件數多于二等品件數的概率為2( )=(1)+(2)+(3)=3+7+1=31.PAPAPAPA40120120408.解:(1)抽獎一次,只有中獎和不中獎兩種狀況,故X的取值只有1和0兩種狀況.P(X142C4=C=,13則P(X=0)=1-P(X=1)=1-=.5所以X的概率散布為X=k0132P(X=k)55(2)①顧客乙中獎可分為互斥的兩類:所抽取的2張獎券中有1張中獎或2張都中獎.1120C4C6+C4C6302故所求概率P=C1045.2②Y的全部可能取值為0,10,20,50,60,且02151C4C6P(Y=0)=2==,C1045311182CC36=,P(Y=10)=2=102031C3C6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年健身草根運動合同
- 2025年在線工業(yè)制造平臺用戶注冊協(xié)議
- 2025年公用事業(yè)水電燃氣協(xié)議
- 2025年人力資源抵押合同
- 二零二五版7月:生物制藥研發(fā)成果轉讓及收益分成還款協(xié)議模板3篇
- 二零二五年度高檔實木地板定制安裝合同4篇
- 中銀個人購買寫字樓貸款合同(2024年版)
- 2025年度木地板生產工藝優(yōu)化與節(jié)能減排合同4篇
- 二零二五年度母子公司智能裝備制造合作協(xié)議4篇
- 臨時用電施工安全規(guī)范合同匯編版B版
- 9.2溶解度(第1課時飽和溶液不飽和溶液)+教學設計-2024-2025學年九年級化學人教版(2024)下冊
- 礦山隱蔽致災普查治理報告
- 副總經理招聘面試題與參考回答(某大型國企)2024年
- PDCA循環(huán)提高護士培訓率
- 《獅子王》電影賞析
- 河北省保定市定州市2025屆高二數學第一學期期末監(jiān)測試題含解析
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
- 貨物運輸安全培訓課件
- 前端年終述職報告
- 市人民醫(yī)院關于開展“改善就醫(yī)感受提升患者體驗主題活動”2023-2025年實施方案及資料匯編
評論
0/150
提交評論