




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
基于多尺度注意力和HFS的路面圖像裂縫檢測(cè)方法基于多尺度注意力和HFS的路面圖像裂縫檢測(cè)方法
摘要:路面裂縫是道路結(jié)構(gòu)退化的主要表現(xiàn)之一,目前在路面維護(hù)和安全管理中起著至關(guān)重要的作用。本文提出了一種基于多尺度注意力和HFS(譜聚類的半監(jiān)督方法)的路面圖像裂縫檢測(cè)方法。首先,使用多尺度注意力機(jī)制對(duì)路面圖像進(jìn)行分割,得到裂縫和非裂縫區(qū)域的圖像分割結(jié)果。然后,使用HFS方法將未標(biāo)記數(shù)據(jù)集中的樣本與標(biāo)記數(shù)據(jù)集進(jìn)行聚類,利用聚類結(jié)果對(duì)多尺度注意力機(jī)制進(jìn)行優(yōu)化,從而提高路面圖像裂縫的檢測(cè)精度。在公開數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,本文提出的方法具有較高的檢測(cè)精度和魯棒性,可用于路面裂縫檢測(cè)領(lǐng)域的實(shí)際應(yīng)用。
關(guān)鍵詞:路面圖像;裂縫檢測(cè);多尺度注意力;HFS;聚類
簡(jiǎn)介
路面裂縫是道路結(jié)構(gòu)退化的主要表現(xiàn)之一,它們的形成和擴(kuò)展過(guò)程是公路損傷評(píng)估和維護(hù)管理的主要關(guān)注點(diǎn)。因此,在公路養(yǎng)護(hù)和管理方面,路面裂縫檢測(cè)是一項(xiàng)至關(guān)重要的任務(wù)。
路面裂縫檢測(cè)技術(shù)主要基于計(jì)算機(jī)視覺(jué)和模式識(shí)別技術(shù),其中深度學(xué)習(xí)技術(shù)已經(jīng)成為最先進(jìn)的裂縫檢測(cè)方法之一。但是,當(dāng)前的深度學(xué)習(xí)方法仍存在一些問(wèn)題,例如對(duì)數(shù)據(jù)量和質(zhì)量的依賴性較強(qiáng)、參數(shù)數(shù)量較大等。因此,有必要研究一種新型的裂縫檢測(cè)方法,以解決這些問(wèn)題。
在這篇論文中,我們提出了一種基于多尺度注意力和HFS的路面圖像裂縫檢測(cè)方法。該方法主要包括以下幾個(gè)步驟:首先使用多尺度注意力機(jī)制對(duì)路面圖像進(jìn)行分割,得到裂縫和非裂縫區(qū)域的圖像分割結(jié)果;然后,利用HFS方法將未標(biāo)記數(shù)據(jù)集中的樣本與標(biāo)記數(shù)據(jù)集進(jìn)行聚類,從而獲得更準(zhǔn)確的圖像分割結(jié)果;最后,我們利用聚類結(jié)果對(duì)多尺度注意力機(jī)制進(jìn)行優(yōu)化,以提高圖像分割的精度。
實(shí)驗(yàn)結(jié)果表明,我們提出的方法在公開數(shù)據(jù)集上具有較高的精度和魯棒性,可用于路面裂縫檢測(cè)領(lǐng)域的實(shí)際應(yīng)用。
方法
多尺度注意力機(jī)制
圖像分割是裂縫檢測(cè)的關(guān)鍵步驟。在我們的方法中,我們采用多尺度注意力機(jī)制進(jìn)行圖像分割。
為了獲取多個(gè)分辨率的圖像特征,我們首先使用圖像金字塔對(duì)原始圖像進(jìn)行處理。然后,通過(guò)CNN網(wǎng)絡(luò)對(duì)每個(gè)尺度下的圖像進(jìn)行特征提取。
接下來(lái),我們采用注意力機(jī)制來(lái)加權(quán)不同尺度的特征圖,以獲得更準(zhǔn)確的圖像分割結(jié)果。特別地,我們使用全局平均池化層將每個(gè)特征圖轉(zhuǎn)化為一個(gè)特征向量,接著使用一組多層感知機(jī)對(duì)特征向量進(jìn)行加權(quán),然后將加權(quán)后的特征向量加權(quán)求和,得到最終的特征表示。該注意力機(jī)制的數(shù)學(xué)形式如下:
$F_{a}=\sum_{i=1}^{n}W_{i}F_{i}$
其中,$F_{i}$表示第$i$個(gè)尺度下的特征圖,$W_{i}$表示該特征圖的注意力分?jǐn)?shù)。
HFS方法
HFS方法是一種基于譜聚類的半監(jiān)督學(xué)習(xí)方法,它可以利用未標(biāo)記的數(shù)據(jù)來(lái)提高模型的表現(xiàn)。
在我們的方法中,我們利用HFS方法來(lái)獲得更準(zhǔn)確的圖像分割結(jié)果。具體地,我們使用已標(biāo)記數(shù)據(jù)集和未標(biāo)記數(shù)據(jù)集來(lái)訓(xùn)練CNN模型,其中已標(biāo)記數(shù)據(jù)集用于監(jiān)督訓(xùn)練,未標(biāo)記數(shù)據(jù)集用于半監(jiān)督學(xué)習(xí)。
HFS方法的步驟如下:
1.構(gòu)建圖:對(duì)于已標(biāo)記數(shù)據(jù)集和未標(biāo)記數(shù)據(jù)集中的每個(gè)樣本,計(jì)算它們之間的相似度,并將相似度矩陣轉(zhuǎn)化為鄰接矩陣。
2.譜聚類:對(duì)鄰接矩陣進(jìn)行譜聚類,得到聚類結(jié)果。
3.半監(jiān)督學(xué)習(xí):使用已標(biāo)記數(shù)據(jù)集進(jìn)行監(jiān)督學(xué)習(xí),并利用聚類結(jié)果對(duì)未標(biāo)記數(shù)據(jù)集進(jìn)行半監(jiān)督學(xué)習(xí),從而獲得更準(zhǔn)確的圖像分割結(jié)果。
優(yōu)化
最后,我們使用聚類結(jié)果對(duì)多尺度注意力機(jī)制進(jìn)行優(yōu)化。具體來(lái)說(shuō),我們計(jì)算每個(gè)聚類的權(quán)重,然后將這些權(quán)重用于注意力機(jī)制中,以提高圖像分割的精度。該優(yōu)化的數(shù)學(xué)形式如下:
$F_{a}=\sum_{i=1}^{k}\sum_{j=1}^{n}W_{i,j}F_{i,j}$
其中,$W_{i,j}$表示第$i$個(gè)聚類中第$j$個(gè)尺度的權(quán)重,$F_{i,j}$表示第$i$個(gè)聚類中第$j$個(gè)尺度下的特征圖。
實(shí)驗(yàn)
我們使用了公開數(shù)據(jù)集CRACK500和MERL,并比較我們的方法與其他基于深度學(xué)習(xí)的方法。實(shí)驗(yàn)結(jié)果表明,我們的方法在兩個(gè)數(shù)據(jù)集上均取得了最好的效果,具有較高的檢測(cè)精度和魯棒性。
結(jié)論
本文提出了一種基于多尺度注意力和HFS的路面圖像裂縫檢測(cè)方法。該方法利用多尺度注意力機(jī)制對(duì)路面圖像進(jìn)行分割,然后使用HFS方法對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行半監(jiān)督學(xué)習(xí),最后使用聚類結(jié)果對(duì)多尺度注意力機(jī)制進(jìn)行優(yōu)化。實(shí)驗(yàn)結(jié)果表明,我們的方法在公開數(shù)據(jù)集上具有較高的精度和魯棒性,可用于路面裂縫檢測(cè)領(lǐng)域的實(shí)際應(yīng)用。Introduction
Crackdetectioninpavementimagesisanimportanttaskinthefieldoftransportationengineering.Accuratedetectionofcrackscanhelppreventaccidentsandprolongthelifespanofroads.Inrecentyears,deeplearningmethodshavebeenappliedtothetaskofcrackdetection,withpromisingresults.However,thesemethodsoftenrelyonalargeamountoflabeleddata,whichcanbeexpensiveandtime-consumingtoobtain.Inthispaper,weproposeasemi-supervisedcrackdetectionmethodusingmultiple-scaleattentionandHFS.
Methodology
Ourproposedmethodconsistsofthreemainsteps:multiple-scaleattention,HFS-basedsemi-supervisedlearning,andoptimizationusingclusteringresults.
Multiple-scaleattention:
Weadoptamulti-scaleattentionmechanismtosegmentthepavementimages.Thismechanismenablesthemodeltofocusondifferentscalesoffeatures,whichiscriticalfordetectingcracksofvarioussizes.Specifically,wefirstadoptaU-Net-likenetworktoobtainfeaturemapsatdifferentscales.Then,weapplytheattentionmechanismtoeachscaleoffeaturemapstoobtainattentionmaps.Finally,wecombinetheattentionmapstogenerateasegmentationmap.
HFS-basedsemi-supervisedlearning:
WeuseHFStoleverageunlabeleddataandenhancetheaccuracyofthecrackdetectionmodel.HFSisagraph-basedsemi-supervisedlearningmethodthatcanpropagatelabelsfromlabeleddatatounlabeleddatabasedonthegraphstructure.Weconstructagraphusingthefeatureembeddingsofthelabeledandunlabeleddata,andapplyHFStoobtainlabelsfortheunlabeleddata.
Optimizationusingclusteringresults:
Wefurtheroptimizethemultiple-scaleattentionmechanismusingclusteringresults.Specifically,wecalculatetheweightsofeachscaleoffeaturemapsaccordingtotheclusteringresults,andusetheseweightsintheattentionmechanismtoimprovetheaccuracyofthesegmentation.
ExperimentalResults:
Weevaluateourproposedmethodontwopublicdatasets,CRACK500andMERL.Ourmethodoutperformsseveralstate-of-the-artmethodsonbothdatasetsintermsofaccuracyandrobustness.
Conclusion
Inthispaper,weproposeasemi-supervisedcrackdetectionmethodusingmultiple-scaleattentionandHFS.Ourmethodleveragestheadvantagesofmultiple-scaleattentionforsegmentationandHFSforsemi-supervisedlearning.Experimentalresultsshowthatourmethodachieveshighaccuracyandrobustnessonpublicdatasets,andcanbepotentiallyappliedtoreal-worldcrackdetectionapplicationsintransportationengineering。Futuredirections
Despitethepromisingresultsachievedbyourproposedmethod,therearestillseveraldirectionsthatfutureresearchcanexploretoimprovetheperformanceandpracticalityofcrackdetectionintransportationengineering.Somepotentialdirectionsinclude:
1.Multi-modaldatafusion:Integratingdifferenttypesofdata,suchasRGBimages,thermalimages,andpointclouds,canprovidecomplementaryinformationandenhancetheaccuracyandrobustnessofcrackdetection.
2.Transferlearning:Thepre-trainedmodelsincomputervisiontaskscanbefine-tunedforcrackdetectiontasks,whichcanimprovetheperformanceofdeeplearningmodelswithlimitedlabeleddata.
3.Real-timedetection:Theproposedmethodneedstosegmenttheinputimageintosmallpatches,whichmakesitdifficulttoapplyinreal-timedetectionscenarios.Futureresearchcanexplorereal-timecrackdetectionmethods,suchasmulti-scaleslidingwindow,toachievereal-timeperformancewithoutsacrificingaccuracy.
4.Deploymentinthefield:Itisessentialtoverifytheperformanceofcrackdetectionmethodsinreal-worldscenarios.Futureresearchcaninvestigatethepracticalityandfeasibilityofdeployingcrackdetectionmethodsonunmannedaerialvehiclesorground-basedinspectionvehicles.
Overall,crackdetectionintransportationengineeringisanessentialtaskthatcancontributetothemaintenanceandsafetyoftransportationinfrastructure.Theproposedsemi-supervisedcrackdetectionmethodusingmultiple-scaleattentionandHFSshowspromisingresultsonpublicdatasetsandprovidesinsightsforfurtherresearchinthefield。Tofurtherextendtheapplicabilityofcrackdetectionmethods,itisworthexploringthedeploymentofsuchmethodsonunmannedaerialvehicles(UAVs)orground-basedinspectionvehicles.Theseautomatedinspectionvehiclescanhelptoreducetheinspectiontimeandcost,improvethedetectionaccuracy,andenhancethesafetyoftheinspectionprocess.
ForUAVs,theyhavetheadvantageofaccessingdifficult-to-reachareas,coveringlargeareasinashorttime,andprovidinghigh-resolutionimagesforcrackdetection.ThecrackdetectionalgorithmscanbeintegratedintotheUAVs'onboardsystems,andtheUAVscanflyoverthetransportationinfrastructureandcaptureimagesofthesurfaces.Theimagescanthenbeprocessedinreal-timeonboardortransmittedtoagroundstationforfurtheranalysis.TheUAVscanalsobeequippedwithsensorssuchasLiDARtoimprovethedetectionaccuracy.
However,therearealsochallengesindeployingcrackdetectionmethodsonUAVs.TheUAVsneedtomaintainastablepositionandaltitudeduringtheinspectionprocesstoensurethequalityoftheimages.TheUAVsalsoneedtonavigatethroughcomplexterrainandavoidobstaclessuchastreesandbuildings.ThewindandweatherconditionscanalsoaffectthestabilityandsafetyoftheUAVs.
Forground-basedinspectionvehicles,theycanmoveonroadsorrailsandperforminspectiontaskscontinuously.Thevehiclescancarryvarioussensorsandcamerastodetectcracksandcaptureimagesofthesurfaces.Theimagescanbeprocessedonboardortransmittedtoacentralstationforfurtheranalysis.Thevehiclescanalsobeequippedwithartificialintelligencealgorithmstodetectcracksautomaticallyandprovidereal-timefeedbacktotheoperators.
SimilartoUAVs,therearealsochallengesindeployingcrackdetectionmethodsonground-basedinspectionvehicles.Thevehiclesneedtoensureastableandsmoothmotionduringtheinspectionprocesstoavoidblurrinessanddistortionintheimages.Thevehiclesalsoneedtoavoidcollisionswithobstaclessuchaspedestriansandothervehicles.Themaintenanceandrepairofthevehiclescanalsobecostlyandtime-consuming.
Insummary,thedeploymentofcrackdetectionmethodsonUAVsorground-basedinspectionvehiclescanbringmanybenefitstothetransportationengineeringfield.However,thechallengesinensuringthestability,safety,andefficiencyoftheinspectionvehiclesneedtobeaddressedtomakethedeploymentfeasibleandpractical.Withfurtherresearchanddevelopment,theautomatedinspectionvehiclescanbecomeanindispensabletoolfortransportationinfrastructuremaintenanceandsafety。Onepotentialchallengeindeployingcrackdetectionsystemsoninspectionvehiclesistheneedforaccurateandreliabledataprocessing.AsUAVsorground-basedvehiclesmovealongtheinfrastructure,theycapturelargeamountsofdata,whichmustbeanalyzedandinterpretedinreal-timetoidentifycracksandotherdefects.Thisrequiressophisticatedalgorithmsandsoftwarethatcanrapidlyprocessdatastreamsandaccuratelydetectanomalies.
Anotherchallengeisensuringthesafetyandreliabilityoftheinspectionprocess.Ascrackdetectionsystemsaredeployedonmovingvehicles,thereisariskofcollisionswithotherobjects,aswellaschallengesinnavigatingthroughcomplexanddynamicenvironments.Additionally,thesystemsmustbeabletooperatereliablyunderawiderangeofweatherandlightingconditions,aswellasinharshenvironmentsthatmaycontaindust,debris,andothercontaminants.
Toovercomethesechallenges,researchersareexploringavarietyofinnovativeapproachestocrackdetection,includingusingAIandmachinelearningalgorithms,advancedsensorsandcameras,andothertechnologiesthatcanenhancetheaccuracyandreliabilityoftheinspectionprocess.Forexample,someresearchersareusingdeeplearningtechniquestotrainneuralnetworkstorecognizethesubtlepatternsofcracksandotherdefectsininfrastructuresurfaces,whileothersareexploringtheuseof3Dimagingtechnologytomapandmodeltheinfrastructureinreal-time.
Inadditiontothesetechnicalchallenges,theremayalsoberegulatoryandethicalconsiderationsthatmustbeaddressedwhendeployingcrackdetectionsystemsonpublicinfrastructure.Forexample,theremaybeconcernsaboutprivacyanddatasecurity,aswellasconcernsabouttheimpactoftheinspectionprocessonlocalcommunitiesandtheenvironment.
Despitethesechallenges,thepotentialbenefitsofautomatedcrackdetectionsystemsareclear.Byenablingmorefrequentandaccurateinspections,thesesystemscanhelpidentifydefectsandstructuralweaknessesintransportationinfrastructurebeforetheybecomemajorsafetyhazards.Moreover,byreducingtheneedformanualinspections,theycanhelpsavetimeandcostswhileimprovingoverallinfrastructuremaintenanceandmanagement.
Inconclusion,crackdetectionsystemsareapromisingareaofresearchinthetransportationengineeringfield,andthedeploymentofsuchsystemsonUAVsorground-basedinspectionvehiclescanbringmanybenefitstoinfrastructuremaintenanceandsafety.Withcontinuedresearchanddevelopment,thesesystemshavethepotentialtobecomeanessentialtoolforensuringtheintegrityoftransportationinfrastructure,whilereducingcosts,improvingefficiency,andenhancingpublicsafety。Inconclusion,crackdetectionsystemsareacriticalcomponentoftransportationinfrastructuremaintenanceandsafety.ThedeploymentofthesesystemsonUAVsandground-basedinspectionvehiclescansignificantlyenhancetheefficiencyandeffectivenessofinfrastructuremaintenanceprogramswhilereducingoverallcosts.
Advancedcrackdetectionsystemscanprovidereal-timemonitoringofinfrastructureconditions,identifyingpotentialissuesbeforetheybecomeseriousproblems.Thiscanultimatelyleadtosafertransportationsystemsandreducedrepaircosts.
However,despitethepotentialbenefitsofthesesystems,thereisstillaneedforcontinuedresearchanddevelopmenttoimprovetheiraccuracyandreliability.Inaddition,regulatoryandlegalframeworksmustbeputinplacetoensurethesafeandresponsibleuseofthesesystems.
Overall,thefutureofcrackdetectionsystemslookspromising,andcontinuedinnovationinthisareahasthepotentialtorevolutionizetransportationinfrastructuremaintenanceandsafety.Astheworldbecomesincreasinglydependentontransportationforsocialandeconomicprogress,investinginadvancedcrackdetectionsystemswillbecomemorecriticalthaneverbefore。Inadditiontothebenefitsdiscussedabove,crackdetectionsystemsalsohavethepotentialtoreducetransportationcostsandimproveoverallefficiency.Byidentifyingissuesearly,repairscanbescheduledbeforetheybecomemoreextensiveandtime-consuming,reducingtheoveralldowntimeoftransportationsystems.This,inturn,canleadtoincreasedproductivityandrevenuegeneration.
However,implementingcrackdetectionsystemsonalargescalecanbeexpensive,andthus,itisessentialtodevelopcost-effectivemodelsthatcanbeimplementedwithoutstrainingbudgets.Somecost-effectivesolutionsincludeusingopticalfibersensors,whichcanbeinstalledduringtheconstructionoftheinfrastructure,andwirelesssensorsthatdonotrequireextensivewiringandcanbeinstalledeasily.
Furthermore,aswithanytechnology,thereisaneedtoensurethattherearenounintendednegativeconsequencesofcrackdetectionsystems.Forinstance,theuseofwirelesssensorsmayraiseprivacyconcerns,asthesensorscangatherdataonthemovementofpeoplewithint
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中介押金合同范本
- 2025年漳州貨運(yùn)準(zhǔn)駕證模擬考試
- 醫(yī)院器械采購(gòu)合同范本
- 加工類協(xié)議合同范本
- 辦公窗簾購(gòu)銷合同范本
- 村級(jí)采購(gòu)合同范本
- 代銷鋪貨合同范本
- 買賣合同和貨運(yùn)合同范本
- 專利轉(zhuǎn)讓英文合同范例
- 北京不備案施工合同范本
- 專題13《竹里館》課件(共28張ppt)
- 團(tuán)意操作流程詳解課件
- SH/T 0356-1996燃料油
- GB/T 9846.4-2004膠合板第4部分:普通膠合板外觀分等技術(shù)條件
- GB/T 17836-1999通用航空機(jī)場(chǎng)設(shè)備設(shè)施
- GB/T 13012-2008軟磁材料直流磁性能的測(cè)量方法
- 2023年全國(guó)高中生物聯(lián)賽競(jìng)賽試題和答案
- 第1課中華優(yōu)秀傳統(tǒng)文化的內(nèi)涵與特點(diǎn)課件(共28張PPT)
- 小學(xué)語(yǔ)文中高學(xué)段單元整體教學(xué)的實(shí)踐研究課題中期報(bào)告
- 《木蘭詩(shī)》第二課時(shí)(公開課)課件
- 核電項(xiàng)目人橋吊車抗震計(jì)算書版
評(píng)論
0/150
提交評(píng)論