版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
LearningHowtoBuildBack
BetterthroughCleanEnergy
PolicyEvaluation
JosephE.Aldy
WorkingPaper22-15
August2022
ResourcesfortheFuturei
AbouttheAuthor/Authors
JosephE.AldyisauniversityfellowatResourcesfortheFutureandaProfessorofthePracticeofPublicPolicyatHarvard’sKennedySchool.Hisresearchfocusesonclimatechangepolicy,energypolicy,andmortalityriskvaluation.AldyalsocurrentlyservesasthefacultychairoftheRegulatoryPolicyProgramattheHarvardKennedySchool.In2009–2010,heservedasthespecialassistanttothepresidentforenergyandtheenvironment,reportingthroughboththeWhiteHouseNationalEconomicCouncilandtheOfficeofEnergyandClimateChange.
Acknowledgements
FantasticresearchassistancewasprovidedbyMichaelChen,EmilyFry,CharlesHua,MichelleLi,ConnorMcRobert,EmMurdock,KenNorris,SiddShrikanth,andDanStuart.IhavebenefittedfromexcellentfeedbackfromDanielleArostegui,JulieGohlke,WesLook,KevinRennert,MorganRote,BeiaSpiller,andNatashaVidangos,seminarattendeesatFloridaState,MIT,ResourcesfortheFuture,UniversityofHouston,andtheASSAannualconference.ThisresearchhasbeensupportedbyEnvironmentalDefenseFund,HarvardUniversityCenterfortheEnvironment,HKSMossavar-RahmaniCenterforBusinessandGovernment,andHKSCenterforPublicLeadership.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationii
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutioninWashington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFiscommittedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesofinformationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.TheviewsexpressedherearethoseoftheindividualauthorsandmaydifferfromthoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyandredistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynotapplyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethematerialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/
.
iii
Abstract
TheInfrastructureInvestmentandJobsAct,theCHIPSandScienceAct,andtheInflationReductionActauthorizedandappropriatedunprecedentedspendingandtaxexpenditurestodecarbonizetheAmericaneconomy.Inthespiritof“buildbackbetter,”thispaperexamineshowintegratingevaluationinthedesignandimplementationofthesenewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime.Itdrawslessonsfromtwocasestudies:(1)oninstitutionalizingevaluationbasedontheexperiencewithregulatoryreview,and(2)onconductingevaluationbasedontheresearchliteratureassessingthe2009RecoveryAct’scleanenergyprograms.Thepaperidentifiesinrecentlegislationtheprogramsandtheircharacteristicsamenabletovariousevaluationmethodologies.Thepaper
closeswithrecommendationsforacleanenergyprogramevaluationframework
thatwouldenableimplementationofclimate-orientedlearningagendasunderthe
Evidence-BasedPolicymakingAct.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluationiv
Contents
1.Introduction1
2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview3
2.1.DemonstratingtheCompellingNeedforPolicyAction3
2.2.StandardizingEvaluationMethodsandProcess4
2.3.PromotingaCultureforRetrospectiveAnalysisandIterativePolicymaking5
3.ConductingProgramEvaluations:LessonsfromAcademicResearchofthe
AmericanRecoveryandReinvestmentActof20096
3.1.LearningthroughRandomization:TheWeatherizationAssistanceProgram7
3.2.ComparingWinnersandLosers:SmallBusinessInnovationResearchGrants9
3.3.ExploitingStateVariation:StateEnergy-EfficientApplianceRebateProgram11
3.4.ExploitingFormulaAllocations:EmploymentImpactsofCleanEnergy
Programs12
4.PlanningforCleanEnergyProgramEvaluations14
4.1.DevelopCross-cuttingandAgency-specificGuidanceforPerformance
Evaluations14
4.2.IdentifyPriorityOutcomestoEvaluate14
4.3.IdentifyPoliciesandProgramswithSignificantLearningPotential15
4.4.DevelopEvaluationPlansandDataProtocols15
4.5.EnsureEvaluationPlanTransparency16
4.6.PromoteaPerformanceEvaluationCulture17
5.ConclusionsandPolicyImplications18
6.References19
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation1
1.Introduction
In2021,theU.S.Governmentpledgedtoreduceitsgreenhousegasemissions
50-52percentbelowtheir2005levelsby2030andtoachieveeconomy-widenet-zeroemissionsby2050.Tomakeprogressontheseemissiongoals,theBidenAdministrationandCongresshaveadvancedanambitiousprogramto“buildbackbetter”throughtheInfrastructureInvestmentandJobsAct,1theCHIPSandScienceAct,2andtheInflationReductionAct.3Theselawsbuildondecadesofcleanenergypolicyatthefederal,state,andlocallevels,including:taxcredits,accelerateddepreciation,taxexemptions,rebates,grants,loans,loanguarantees,andregulatoryandinformationdisclosurerequirements.Inthespiritofbuildbackbetter,integratingprogramevaluationinthedesignandimplementationofnewcleanenergypoliciescanfacilitatethelearningnecessaryforpolicymakerstomakepolicybetterovertime:increasingthelikelihoodofachievingclimategoalsandreducingthecostsofdoingso.
Threekeycharacteristicsoftheclimatechallengeillustratethesignificantvalueinevaluatingcleanenergypolicyperformance.First,transformingthemodernenergyeconomytocombatclimatechangewillrequireunprecedenteddepthandbreadthofpolicyaction.Pastpolicyexperienceslikelyprovideincompleteinsightsforhowtodesignambitiousdecarbonizationpolicies.Acontinuouslearningprocesswillbeneededaswedeploynewtechnologiesandpolicystrategies.Second,manytechnological,environmental,social,andeconomicuncertaintiescharacterizingcleanenergywillberesolvedbypolicypractice.Somepolicieswillturnoutmoreeffectivethanexpected,whileotherslesseffectivethanexpected.Policyexperimentationreducinguncertaintywillprovidethefoundationformakingpolicybetterovertime.Third,thepolicyresponsetoclimatechangewillcontinuetooccurthroughaseriesofbillsandregulationsovertime:annualappropriations;taxextenderpackages;agriculture,energy,andtransportationbills;reconciliationbills;otherlegislation;regulatorystandards,andmore.Iterativepolicyprocessescreateopportunitiesforusinglessonstoinformandimprovefuturepolicydesign.
Understandingthecausalimpactsofpolicy—e.g.,howdidacleanenergypolicydirectlychangeemissions,energyinvestment,employment,publichealth,etc.—iscriticalforimprovingpolicydesignandimplementationovertime.AstheCommissiononEvidence-BasedPolicymaking(2017)noted,“[p]olicymakersmusthavegoodinformationonwhichtobasetheirdecisionsaboutimprovingtheviabilityandeffectivenessofgovernmentprogramsandpolicies.Today,toolittleevidenceisproducedtomeetthisneed”(p.1).Despitethedearthofadequateevidence,theCommissionemphasizedaconstructivepathforward:“[m]oderntechnologyandstatisticalmethods,combinedwithtransparencyandastronglegalframework,createtheopportunitytousedataforevidencebuildinginwaysthatwerenotpossibleinthepast”(p.1).TheFoundationsforEvidence-BasedPolicymakingActof2018
1P.L.117-58.
2P.L.117-167.
3P.L.117-169.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation3
2.InstitutionalizingProgramEvaluation:LessonsfromRegulatoryReview
Since1981,RepublicanandDemocraticAdministrationshaverequiredregulatoryagenciestoestimatetheprospectivebenefitsandcostsoftheirmajorregulatoryproposalsasapartoftheregulatoryreviewprocess.5Environmentalandenergyregulationsrepresentadisproportionateshareoffederalregulatoryproposals.Over2007-2016,theEnvironmentalProtectionAgency(EPA),DepartmentofEnergy,andDepartmentofTransportation(inrulesjointly-issuedwithEPA)issuedmorethanhalfofallmajorfederalregulations(OMB2018).Theseenvironmentalandenergyrulesrepresentmorethan85percentoftheprospectivebenefitsand75percentoftheprospectivecostsofmajorFederalregulations(Aldy2020b).Theexperiencewithregulatoryreviewholdsthreemajorlessonsforinstitutionalizingcleanenergyprogramevaluation.
2.1.DemonstratingtheCompellingNeedforPolicy
Action
Policymakerscancommunicatemoreeffectivelywhyapolicyactionisinournation’sinterestbymarshallingevidenceoftheimpactsofthatpolicyaction.Forexample,thecurrentregulatoryreviewprocessrequiresfederalagenciestodemonstratethattheirregulationsaddressa“compellingneed,suchasmaterialfailuresofprivatemarketstoprotectorimprovethehealthandsafetyofthepublic,theenvironment,orthewell-beingoftheAmericanpeople”(E.O.12866,§1(a)).Inarulemaking,aregulatoryagencyidentifiesthemarketfailure,highlightshowtheproposedregulatoryactionaddressesthemarketfailureandwhyitispreferredtoalternativeapproaches,andshowshowthebenefitsjustifythecosts.The“compellingneed”standardthatmotivatesregulatoryactionswouldreasonablyapplytoanypublicpolicy,includingspendingandtaxexpenditures,thatpromotescleanenergyinvestmenttocombatclimatechange.Spendingandtaxpolicythatdeliveronthesameobjectiveasaregulatoryactionmeritacomparableapproachtoevaluation.
Virtuallyallcleanenergyspendingeffectivelysubsidizesinvestmentinequipmentandcapitalthatcouldbemandatedunderregulatorystandardstoaddressclimatechange-relatedmarketfailures.Forexample,furnaceshavebeensubjecttominimumenergyefficiencystandards,6qualifiedforenergy-efficientappliancerebates(HoudeandAldy
5See:E.O.12291,46FederalRegister13193,February17,1981;andE.O.12866,58FederalRegister51735,October4,1993.
6Referto“EnergyConservationProgramforConsumerProducts:EnergyConservationStandardsforResidentialFurnacesandBoilers,”72FederalRegister65136,November19,2007.
4
2017),andbeeneligiblefortaxcredits.7Windpowerhasbeeneligibleforproductiontaxcredits,§1603grants,and§1705loanguarantees(Aldy2013),andplayedakeyroleindeterminingemissionstandardsunderEPA’sCleanPowerPlan(Fowlieetal.2014).
Justasanalysiscaninformtheselectionanddesignofpreferredregulatoryoptions,evaluationsofspendingandtaxprogramscanenhancepolicymakerunderstandingofthemosteffectiveinstrumentsfordeliveringoncleanenergyobjectives.Producingsuchanalysestaketimeandresources;thus,theregulatoryreviewrequirementsapplyonlytothelargestregulatoryactions—thosewithatleast$100millioninannualeconomicimpacts—wherethevalueofinformationgeneratedislikelytobegreatest.The$100millionimpactthresholdthattriggersafull-blownanalysisofregulatoryimpactsismodestrelativetothesizeofmajorcleanenergytaxandspendingprogramsinrecentlaws(e.g.,theInfrastructureInvestmentandJobsActandtheInflationReductionAct).Theseregulatoryanalysesmatterintheregulatory
developmentprocess:theyinformchangestotheruleaftertheproposalstage,and
theyarerequiredtobesubmittedtoCongresswithallmajorfinalrulesunderthe
CongressionalReviewAct.
2.2.StandardizingEvaluationMethodsand
Process
Theevaluationofcleanenergyprogramscandrawfromexistingguidanceintheregulatoryspace.Theycouldalsodrawfromprogramevaluationproceduresappliedtonon-climatepoliciesinotherpartsofthefederalgovernment,suchastheDepartmentsofHealthandHumanServicesandLabor.Thedevelopmentofstandardproceduresforevaluatingcleanenergyspendingprogramscouldreducethetimeandresourcerequirementsforplanningandexecutingprogramevaluations.Suchstandardizedproceduresandguidancecouldfallunderadepartment’slearningagendaandplandevelopmentundertheEvidence-BasedPolicymakingAct.
Forexample,OMB(2003)issuesguidancetoregulatoryagenciesontheconductofregulatoryimpactanalyses.Theguidanceaddressestheeconomicprinciplesandsomecommoneconomicassumptionsthatshouldinformagencyestimationofbenefitsandcosts.Theguidanceemphasizesboththeexpectedrigorofanalysis—andtheimportanceofrelyingonpeer-reviewedliterature—aswellasthecommunicationoftheresultsoftheanalysistoenableaclearunderstandingbypolicymakers,stakeholders,andthepublic.Suchregulatoryimpactanalysesoftengobeyondsimplytallyingandcomparingbenefitsandcosts;theyalsopresentestimatedemploymentandcompetitivenessimpacts,ancillarybenefitsbeyondthetargetoftherule,aswellasthedistributionanduncertaintycharacterizingtheimpactsoftheregulatoryaction(Aldyetal.2021,Robinsonetal.2016).
Severalregulatoryagencieshavedevelopedtheirownguidancefortheconduct
ofprospectiveregulatoryimpactanalyses,suchasEPA(2014)andDepartmentof
7P.L.111-5,section1121.
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation5
HealthandHumanServices(2016).TheDepartmentofTransportation(2021)issuesregularupdatesofitsapproachforvaluingreductionsinmortalityriskthroughitsregulatoryauthorities.TheBidenAdministrationrelaunchedtheinteragencyworkinggrouponthesocialcostofgreenhousegases,whichprovidesestimatesofthesocialcostofcarbon,methane,andnitrousoxidethatcanmonetizethebenefitsofreducinggreenhousegasemissionsthroughregulationandotherFederalactions.8Toimproveunderstandingoftheenvironmentaljusticeimplicationsoffederalinvestments,OMB(2021b)issuedguidanceforhowtocalculateandreportthebenefitsofsuchactionsundertheJustice40Initiative.Theseguidancedocumentstypicallyhaveundergonepeerreview,suchasthroughtheEPAScienceAdvisoryBoard,theNationalAcademies,andotherprocesses.
2.3.PromotingaCultureforRetrospective
AnalysisandIterativePolicymaking
ThesunsetprovisionsforcleanenergyspendingandtaxexpendituresthroughtheInfrastructureInvestmentandJobsActandtheInflationReductionActcreatewindowsofopportunitiesforhowlookingbackatprogramperformancecaninformsubsequentpolicyactions.Likewise,theiterativeapproachtoregulationscreatesnaturalopportunitiesforexpostevaluationofregulatoryperformance.Anumberofregulatoryauthoritiesoperatethroughanupdatingcycle,suchasEPAairqualitystandards,9DepartmentofEnergyapplianceefficiencystandards,10andDepartmentofTransportationfueleconomystandards11Lookingbackatregulatoryperformanceprovidesanopportunitytolearnabouttheefficacyofruledesignandcompliance
strategiesbyregulatedentities,andsignificantlyenhancesknowledgeofregulatoryimpactsrelativetotheprospectiveanalysisdevelopedattherule-writingstage(Greenstone2009,Sunstein2011,Aldy2014a).
Regulatoryagencies’practicewithrespecttoretrospectivereviewofexistingregulations—whichwouldbeanalogoustoacleanenergyprogramevaluationframework—hasyieldedamixedrecord(Harrington2006,Coglianese2013,Aldy2014a,Bull2015,Cropperetal.2017).EveryadministrationdatingbacktotheCarterAdministrationhascalledonregulatoryagenciestoreviewtheirexistingrules,butthefailuretomeaningfullyinstitutionalizeretrospectivereview,buildacultureofsuchreviewwithinagencies,andappropriatemoniestoensuretheresourcesareavailabletoconductsuchreviews,haveunderminedtheeffectivenessofsuchWhiteHousedirectives.Agencieshavereceivedguidanceonhowtoplanforexpostevaluationsofregulationsduringtherule-makingstage,butfewhavemovedforwardwithsuchstrategies(ACUS2014,Aldy2014a,Cropperetal.2018).
8E.O.13990,86FederalRegister7037,January25,2021.
942USC7409(d).
1042USC6313(a)(6(C).
1149USC32902(k)(3).
6
Promotingacultureforretrospectiveanalysisstartswithinstitutionalizingitsusebypoliticalleadersandthepolicyprocess.Ifthereisneitheranobviousaudiencefortheanalysisnoraprocessforusingtheoutputsoftheanalysisforimprovingpolicy,thenagencieswillconsidersuchevaluationsofpoliciesinpracticealowpriority.DuringtheObamaAdministration’sretrospectiverevieweffort,agenciespostedonlinethelistofrulesunderreviewandtheresultsofthosereviews.Overtime,however,theseperiodicupdatesbyregulatoryagenciesreceivedlessattentionfromtheWhiteHouse,stakeholders,andthemedia(Aldy2014a).
3.ConductingProgramEvaluations:LessonsfromAcademicResearchoftheAmericanRecoveryandReinvestmentActof200912
Thechallengeinlearningaboutpolicyimpactsliesinidentifyingtheappropriatedataandimplementingtherigorousevaluationtoolstoproducearobustunderstandingoftheimpactofcleanenergyprograms.Aprogramevaluationismuchmorethansimplyreportingthenumberofparticipatingfirmsorhouseholdsinaprogram,ortakingsuchacountandmultiplyingitbyanengineering-basedoutcome,suchasexpectedenergysavings.Empiricalsocialscientistshavedevelopedanarrayofevaluationtools—fieldexperimentsthatimplementrandomizedcontroltrialsaswellasquasi-experimentalmethodsthatattempttoreplicatethefundamentalcharacteristicsofarandomizedcontroltrial(e.g.,AngristandPischke2008,LeeandLemieux2010,DiNardoandLee2011,ImbensandRubin2015)—toestimatethevariousoutcomescausedbyaprogramorpolicyintervention.
Estimatingthecausalimpactofacleanenergyprogramrequiresinformationaboutboththosewhoparticipateintheprogramandthosewhodonot.Simplycollectingdatafromthosereceivinggrantsorclaimingtaxcreditswouldbeinsufficient;rigorousanalysisalsodependsondataaboutthosehouseholdsandbusinessesthataresimilartothesubsidyrecipientsbutarenotrecipients.Thesenon-participantdataprovidethebasisforthecounterfactual—whatwouldhavehappenedintheabsenceofthepolicy—thatenablesanalysisofprogramperformance.Ineffect,dataonprogramparticipantsrepresentsinformationona“treatment”groupanddataonnon-participantsrepresentstheinformationona“control”group,justasinarandomizedexperimenttoevaluatetheimpactsofadrugorvaccine.
12ForgeneralassessmentsoftheRecoveryAct’scleanenergypackage,refertoAldy
(2013),Carley(2016),andBarbier(2020).
LearningHowtoBuildBackBetterthroughCleanEnergyPolicyEvaluation7
TheambitiousspendingandpolicyexperimentationundertheAmericanRecoveryandReinvestmentActof2009hasbeensubjecttoextensiveprogramevaluationsintheacademicliterature.TheRecoveryActprovidedabout$100billionincleanenergyspendingandtaxexpenditurestopromotedeploymentoflow-carbontechnologiesandspureconomicactivity(Aldy2013,CEA2016).TheenergylandscapehaschangedramaticallysincetheRecoveryActwassignedintolawinFebruary2009:utility-scalesolarpowergenerationismorethan100timesgreaterandwindpowergenerationisnearlyseventimesgreatertodaythanin2008(EIAn.d.).PolicymakerscoulddrawfromthispastexperienceinevaluatingRecoveryActprogramstoapplyprogramevaluationmethodstonewcleanenergypoliciesgoingforward.
Thissectionpresentsillustrationsofmethodsforconductingprogramevaluationsthatcrediblyestimatethecausalimpactsofcleanenergyprograms.IshowhoweachofthesemethodscanbeappliedusingstudiesoffourcleanenergyprogramssupportedbytheRecoveryAct.Ineachcase,Iopenbydescribingthepotentialbiasesthatmayresultinmisleadingclaimsofprogramperformancebasedonprogramparticipationratesandengineeringassumptions.ThenIdescribetheauthors’studyandapplicationofastatisticalmethodthatcanaccountforandminimizethesebiases.Foreachcasestudy,Inotehowthestudy’smethodcouldinformfutureprogramevaluationsforspecificcleanenergyprogramsintheInfrastructureInvestmentandJobsActandthe
InflationReductionAct.
3.1.LearningthroughRandomization:The
WeatherizationAssistanceProgram
The2009RecoveryActprovidednearly$5billionoffundingforWeatherizationAssistancePrograms(WAP)implementedatthestateandlocallevels.Theseweatherizationprogramsfinanceenergy-efficiencyandconservationimprovementsintheresidentialdwellingsofhouseholdswithincomebelowaspecifiedthreshold.
3.1.1.PotentialBiases
TheDepartmentofEnergyhastypicallyestimatedthereducedenergydemandandassociatedenergybillsavingsofweatherizationthroughengineering-basedevaluations(e.g.,OakRidgeNationalLaboratory2015).Engineering-basedanalysessufferfromthreepotentialshortcomings.First,theweatherizationinvestmentinpracticemayyielddifferentenergysavingsbecauseofsimplifyingassumptionsintheengineeringmodelorvariationsinthequalityofthecontractorsundertakingthework.Second,individualsoptingtoparticipateinaweatherizationprogrammaybefundamentallydifferent—perhapstheyaremoreenergyorenvironmentallyconscious—fromthegeneralpopulation,andtheirbehaviormaynotberepresentative.Finally,weatherizationlowersthecostofanenergyservice—suchasheatingahometoagiventemperature.Residentsofaweatherizedhomemayadjustthethermostat,orbuymoreenergy-consumingappliances,andthisso-called“reboundeffect”wouldoffsetsomeoftheenergysavings.
8
3.1.2.AnEvaluationStrategytoAddresstheBiases
Inpolicydebates,therehasoccasionallybeenatensionbetweenadvocatesofprogramevaluation—whoargueforimplementingapublicprogramthrougharandomizedcontroltrialtoenablerigorousassessment—andagencystafforpoliticianswhoclaimthattheprogramshouldbeavailabletoeveryonewhoiseligible.Fowlieetal.(2018)developedacleverwayofresolvingthistension.WorkingwithalocalweatherizationprograminMichigan,theydevelopedarandomizedencouragementprogram—theydidnotalterwhowaseligibleforthismeans-testedprogram,buttheyrandomizedwhoreceivedinformationandtechnicalassistanceforapplyingforweatherizationaid.Thisrandomizationsatisfiedpoliticalconstraints,andalsoallowedtheresearcherstoensurethattheirresultswerenotconfoundedby,forexample,self-selectionintotheprogrambythosemorelikelytobeenergy-conscious.They
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 玉溪師范學(xué)院《外國(guó)民族音樂(lè)》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《思想政治學(xué)科教學(xué)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《色彩人像》2022-2023學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《空間構(gòu)成基礎(chǔ)》2022-2023學(xué)年第一學(xué)期期末試卷
- 動(dòng)力測(cè)試儀器賬務(wù)處理實(shí)例-記賬實(shí)操
- 五年級(jí)下冊(cè)音樂(lè)課件下載
- 廣州版五年級(jí)英語(yǔ)下冊(cè)教案
- 2024年航空制造和材料專用設(shè)備項(xiàng)目評(píng)價(jià)分析報(bào)告
- 2024屆河北省張家口市尚義一中高三一模數(shù)學(xué)試題試卷
- 測(cè)繪及勘察合同
- 心肺復(fù)蘇后疾病的病理生理和預(yù)后
- 《餐飲服務(wù)的特點(diǎn)》課件
- 江蘇開(kāi)放大學(xué)2023年秋《科學(xué)思維方法論 060053》形成性作業(yè)三參考答案
- 門診醫(yī)師出診考勤表
- 廣州市社會(huì)保險(xiǎn)工傷待遇申請(qǐng)表
- 少兒科學(xué)實(shí)驗(yàn)-直升飛機(jī)
- 財(cái)政與金融基礎(chǔ)知識(shí)(中職財(cái)經(jīng)商貿(mào)類專業(yè))全套教學(xué)課件
- 控告法官枉法裁判的范文
- 煤礦巷道壁后注漿施工工藝
- 展示燈箱施工方案
- SL631-637-2012-水利水電工程單元工程施工質(zhì)量驗(yàn)收評(píng)定標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論