




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Introduction
Patternrecognitiontechniquesareusedtoautomaticallyclassifyphysicalobjects(handwrittencharacters,tissuesamples)orabstractmultidimensionalpatterns(n
pointsin
d
dimensions)intoknownorpossiblyunknowncategories.Anumberofcommercialpatternrecognitionsystemsareavailableforcharacterrecognition,handwritingrecognition,documentclassification,fingerprintclassification,speechandspeakerrecognition,whitebloodcell(leukocyte)classification,militarytargetrecognition,etc.Mostmachinevisionsystemsemploypatternrecognitiontechniquestoidentifyobjectsforsorting,inspection,andassembly.Thedesignofapatternrecognitionsystemrequiresthefollowingmodules:(i)sensing,(ii)featureextractionandselection,(iii)decisionmakingand(iv)performanceevaluation.Theavailabilityoflowcostandhighresolutionsensors(e.g.,digitalcameras,microphonesandscanners)anddatasharingovertheInternethaveresultedinhugerepositoriesofdigitizeddocuments(text,speech,imageandvideo).Needforefficientarchivingandretrievalofthisdatahasfosteredthedevelopmentofpatternrecognitionalgorithmsinnewapplicationdomains(e.g.,text,imageandvideoretrieval,bioinformatics,andfacerecognition).
Designofapatternrecognitionsystemtypicallyfollowsoneofthefollowingapproaches:(i)templatematching,(ii)statisticalmethods,(iii)syntacticmethodsand(iv)neuralnetworks.Thiscoursewillintroducethefundamentalsofstatisticalpatternrecognitionwithexamplesfromseveralapplicationareas.Techniquesforanalyzingmultidimensionaldataofvarioustypesandscalesalongwithalgorithmsforprojection,dimensionalityreduction,clusteringandclassificationofdatawillbeexplained.Thecoursewillpresentvariousapproachestoexploratorydataanalysisandclassifierdesignsostudentscanmakejudiciouschoiceswhenconfrontedwithrealpatternrecognitionproblems.Itisimportanttoemphasizethatthedesignofacompletepatternrecognitionsystemforaspecificapplicationdomain(e.g.,remotesensing)requiresdomainknowledge,whichisbeyondthescopeofthiscourse.StudentswilluseavailableMATLABsoftwarelibraryandimplementsomealgorithmsusingtheirchoiceofaprogramminglanguage.
Prerequisites
CSE232,MTH314,andSTT441,orequivalentcourses.
TextBook
Duda,HartandStork,PatternClassification,SecondEdition,Wiley,2001.
Youmayfindthe
erratalist
useful.
AnumberofbooksonpatternrecognitionhavebeenputontheAssignedReadingintheEngineeringLibrary.Inaddition,anumberofjournals,includingPatternRecognition,PatternRecognitionLetters,IEEETrans.PatternAnalysis&MachineIntelligence(PAMI),IEEETrans.Geoscience&RemoteSensing,IEEETrans.ImageProcessing,andIEEETrans.Speech,Audio,andLanguageProcessingroutinelypublishpapersonpatternrecognitiontheoryandapplications.
AssignedReading
FollowingbooksareonholdintheEngineeringlibraryforassignedreadingforCSE802.
TheodoridisandKoutroumbas
PatternRecognition
ChristopherBishop
PatternRecognitionandMachineLearning
Fukunaga
IntroductiontoStatisticalPatternRecognition
DevijverandKittler
PatternRecognition:AStatisticalApproach
TouandGonzalez
PatternRecognitionPrinciples
YoungandCalvert
Classification,EstimationandPatternRecognition
Pavlidis
StructuralPatternRecognition
GonzalezandWintz
SyntacticPatternRecognition
Oja
SubspaceMethodsofPatternRecognition
Watanabe
PatternRecognition:HumanandMechanical
JainandDubes
AlgorithmsforClusteringData
(Downloadthebook)
Schalkoff
PatternRecognition:Statistic,StructuralandNeuralApproaches
CourseSchedule
Jan8
IntroductiontoPatternRecognition(Ch1)
StatisticalPatternRecognition:AReview
Lectureslides:
PatternRecognition
HW1
assigned
HW1Solutions
Jan10,15,17
StatisticalDecisionTheory(Ch2)
Jan15:
HW2
assigned;
HW1due
Lectureslides:
Chapter2
NotesonBayesClassification
AnIntroductiontoMatlab
.
Jan22
StatisticalDecisionTheory(Ch2)
Lectureslides:
Neyman-PearsonRule
LinearDiscriminantFunctions
Jan24,29
ParameterEstimation(Ch3)
BayesEstimatorformultivariateGaussiandensitywithunknowncovariancematrices
BayesEstimatorunderquadraticloss
Jan24:
HW3
assigned;
HW2due
Lectureslides:
Chapter3
Jan31
ParameterEstimation(Ch3)
CurseofDimensionality(Ch3)
CoinTossingExample
AProblemofDimensionality:ASimpleExample
Lectureslides:
CurseofDimensionality
Feb5,7
ComponentanalysisandDiscriminants(Ch3)
PrincipleComponentAnalysis(PCA)
Principalcomponentanalysisforfacerecognition.
Lectureslides:
ComponentAnalysis&Discriminants
Feb5:
HW4assigned;
HW3due
Feb12,14,19
NonparametricTechniques(Ch4)
Lectureslides:
NonparametricTechniques
ABranchandBoundAlgorithmforComputingk-NearestNeighbors
Feb19:
HW5assigned;
HW4due
Feb21
DecisionTrees(Ch8)
lectureslides
HierarchicalClassifierDesignUsingMutualInformation
-SethiandSarvarayudu
Feb26
MidTermExam
Feb28
ProjectDiscussion
Mar5,7
SPRINGBREAK
Mar12
ProjectProposalDue(2pages)
LinearDiscriminantfunctions(Ch5)
Lectureslides:
Lineardiscriminantfunctions
Mar14,19
LinearDiscriminantfunctions(Ch5)
SupportVectorMachines
Mar14:
HW6assigned;
HW5due
Mar21,26
NeuralNetworks(Ch6)
Lectureslides
Lectureslides-2
audiofile-1forLectureslides-2
audiofile-2forLectureslides-2
audiofile-3forLectureslides-2
Anoteoncomparingclassifiers
ATutorialonArtificialNeuralNetworks
Performanceevaluationofpatternclassifiersforhandwrittencharacterrecognition
Mar28,Apr2
ErrorRateEstimation,Bagging,Boosting(Ch9)
Mar28:
HW7assigned,
HW6due
Apr4
ClassifierCombination(Ch9)
Lectureslidesonclassifiercombination
CombinationofMultipleClassifiersUsingLocalAccuracyEstimates
byWoods,KegelmeyerandBowyer
Handwritingdigitsrecognitionbycombiningclassifiers
byvanBreukelen,Duin,TaxanddenHartog
Apr9
FeatureSelection
Lectureslidesonfeatureselection
BranchandBoundAlgorithmforFeatureSubsetSelection
byNarendraandFukunaga
FeatureSelection:Evaluation,Application,andSmallSamplePerformance
byJainandZongker
Apr11,16,18
UnsupervisedLearning,Clustering,andMultidimensionalScaling(Ch10)
April11:
HW7due
LectureSlides:Introductiontoclustering
LectureSlides:EMAlgorithm
LectureSlides:Largescaleclustering
TalkonLargeScaleClustering
DataClustering:50YearsBeyondK-means
(Download
PresentationSlides
here)
GraphTheoreticalMethodsforDetectingandDescribingGestaltClusters
byC.Zahn
ANonlinearMappingforDataStructureAnalysis
byJ.Sammon
RepresentationandRecognitionofHandwrittenDigitsUsingDeformableTemplates
byJainandZongker
Apr23
Semi-supervisedlearning
Semi-supervisedlearning
byXiaojinZhu
BoostCluster
byLiu,JinandJain
ConstrainedK-meansClusteringwithBackgroundKnowledge
byWagstaffetal.
Semi-supervisedclusteringbyseeding
byBasuetal.
Apr25
FinalProjectPresentation
FinalProjectReportDue
May1
FINALEXAM,7:45a.m.-9:45a.m.,
3400EB
Grading
Coursegradewillbeassignedbasedonscoresonsixhomeworkassignments,twoexamsandoneproject.Weightsforthesethreecomponentsareasfollows:HW(25%),MIDTERMEXAM(25%),FINALEXAM(25%),PROJECT(25%).Thecumulativescorewillbemappedtothelettergradeasfollows:90%orhigher:4.0;85%to90%:3.5;80%to85%:3.0andsoon.
Boththeexamswillbeclosedbook.MakeupexamswillbegivenONLYifproperlyjustified.
Homeworksolutionsmustbeturnedintheclassonthedatetheyaredue.Latehomeworksolutionswillnotbeaccepted.Homeworksolutionsshouldbeeithertypedorneatlyprinted.
PleaserefertoMSU'spolicyonthe
IntegrityofScholarship.
Allhomeworksolutionsmustreflectyourownwork.Failuretodosowillresultinagradeof0inthecourse.
CourseProject
Thepurposeoftheprojectistoenablethestudentstogetsomehands-onexperienceinthedesign,implementationandevaluationofpatternrecognitionalgorithms.Tofacilitatethecompletionoftheprojectinasemester,itisadvisedthatstudentsworkinteamsoftwo.Youareexpectedtoevaluatedifferentpreprocessing,featureextraction,andclassification(includingbaggingandboosting)approachestoachieveashighaccuracyaspossibleontheselectedclassificationtask.Thetaskfortheprojectisdescribed
here
.
Theprojectreportshouldclearlyexplaintheobjectiveofthestudy,somebackgroundwor
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一年級道德與法治上冊 第三單元 我愛我家 11《把我的愛傳給大家》教學設(shè)計設(shè)計2 鄂教版
- 人教版二年級數(shù)學上冊全冊教案3
- 質(zhì)量改進工作總結(jié)
- 全國人教版信息技術(shù)八年級下冊第一單元第2課《改變線型和顏色》教學設(shè)計
- 神經(jīng)病學腦血管疾病護理
- 過年手抄報課件
- 四年級下冊科學教學設(shè)計-認識光|青島版
- 高中數(shù)學教案在小學教育中的應(yīng)用
- 5.2薪火相傳有繼承 課件-高中政治統(tǒng)編版選擇性必修二法律與生活
- 采購合同電子化歸檔系統(tǒng)數(shù)據(jù)質(zhì)量重點基礎(chǔ)知識點
- 【崗位管理】保利地產(chǎn)集團職位說明書
- 燃氣工程專業(yè)中級職稱理論考試題庫-建設(shè)工程專業(yè)中級職稱理論考試題庫
- 十二指腸球部潰瘍PPT課件
- 鐵路建設(shè)項目施工企業(yè)信用評價辦法(鐵總建設(shè)〔2018〕124號)
- 誘導公式練習題-(中職)
- 2016年浦東新區(qū)公辦小學招生地段
- 鴿巢問題(例1、例2)[1]
- 01戴明十四條
- 完整版佛教葬禮儀式
- 【課件】第六章 模型或原型的制作課件-高中通用技術(shù)蘇教版(2019)必修《技術(shù)與設(shè)計1》
- 鍋爐除氧器過程控制課程設(shè)計
評論
0/150
提交評論