計算書完成后此次為校區(qū)8教學樓的內容包括建筑平面設計_第1頁
計算書完成后此次為校區(qū)8教學樓的內容包括建筑平面設計_第2頁
計算書完成后此次為校區(qū)8教學樓的內容包括建筑平面設計_第3頁
計算書完成后此次為校區(qū)8教學樓的內容包括建筑平面設計_第4頁
計算書完成后此次為校區(qū)8教學樓的內容包括建筑平面設計_第5頁
已閱讀5頁,還剩96頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

ThegraduationdesignforQingdaocampusofshuniversity8#buildingsdesign,designcontentincludingbuildingnedesign,structuredesignandconstructionorganizationdesign.Aftertheaccesstoavarietyofdatatodetermineframelayout,mainpartstructure1)todeterminethestructurescheme.Mainlyreferstotheselectionofthestructureandcomponentlayout.2)theroleandeffectysis.Purposeistocalculatetheinternalsanddeformationofstructure.3)thelimitstatedesign.Purposeisforreinmentstructures,deformationandcrackwidthcalculationwascarriedon.4)thedurabilitydesignandconstructionrequirements.Structureselectionofthebasicprincipleis:ameetstherequirementbconstructionissimple,economicandreasonablecmechanicalperformanceisgood.Intheconstructionofnesizelarge,wanttoconsiderthequestionofwhetherornottosettemperatureexpansionjoints.Thentheinterlayerloadrepresentativevalueiscalculated,usingthemethodofvertexdiscementfromthevibrationcycle,thusthestructureinternalofunderearthquakeload(bendingmoment,shear andaxial).Finallybeam-columninternalysis,calculationoftop,bottom),findoutthemostunfavorablecombinationofinternal.Forflexuralbearingcapacityofnormalsectionandobliquesectionshearbearingcapacitycalculation.Underthecolumnbasedesignandloadcalculation.Finallyselectthelargestbendingshearvaluecalculationofreinmentanddrawing.Intheconstructionorganizationdesignconstructiondeployment,constructionprogressn,work mainmethodsofeachdivisionsubdivisionalwork,toensuretheengineeringqualityoftechnologyorganizationmeasures,ensuresafetycivilizedconstructiontechnologyorganizationmeasuresintheconstructionorganizationdesign,asthekeytoachievetechnically:structuraldesign,seismicdesign,theconstructionorganization目錄前 建筑設 工程概 設計原始資 地質條件及地理概 技術經濟條 材料選 結構選 結構設 框架計算簡圖及梁柱線剛 確定框架計算簡 框架梁柱的線剛度計 豎向荷載計 恒載標準值計 活荷載標準值計 豎向荷載作用下框架內力計 使用彎矩二次分配法計算框架彎 風荷載計 抗震計 重力荷載代表值計 橫向框架側移剛度的計 橫向水平作用下框架結構的內力和側移計 水平作用下框架位移計算 計算柱的反彎點高度 柱端及梁端彎矩的計 梁端剪力計 各柱軸力計 內力組 截面設計與配筋計 框架梁配筋計 框架柱配筋計算 基礎設計與配筋計算 地質條 荷載計 配筋計 施工組織設 工程概 工程概 施工總規(guī) 項目組織體 施工部 施工準備及平面布 搭設臨 修建臨時道路和場 主要施工方 土方工 開挖順 土方的棄土和回 混凝土工 混凝土的質 現(xiàn)場拌制混凝 混凝土的................................................混凝土的澆 樓板混凝土標高厚度的控制方 試塊的制 混凝土的養(yǎng) 施工縫的留 鋼筋工 模板工 模 模板配 模板支 腳手架工 砌體工 抹灰工 質量目 抹灰施工準 屋面工 材料要 卷材防水屋面操作工 施工進度計 主要技術組織措 質量保證體系和質量保證措 安全生產保證措 文明施工保證措 降低成本措 結 致 參考文 附 8#向位移的剛度就會減弱。在非區(qū),現(xiàn)澆鋼筋混凝土框架結構的最大房屋高度過70米或者是20層。作為專業(yè),必須明確什么是房屋高度??蚣芙Y構中,不宜采框架結構進行側移驗算時要會用。此次設計通過給于每個人的工程實例,將自己的建筑面積:4420.4m2室內環(huán)境類別(基礎(b504200-4500m255設為5層考慮到教學樓的階梯教室以及房間內最后一級臺階頂面與之的凈高≥2.1m600mm,3.9m.山東大學8#教學樓規(guī)模設置如下:功能要 數(shù)40人普通教 30班左合班(含階梯)教室3-5計算機教 4教師休息 每層設置一傳達 171930125351.11.1f(kPa()(kN/m3厚度(m1——27.6/318.7/439/水文地質概況:最高水位-3m,常年水位-3.6m,無腐蝕性使用環(huán)境類別:二a抗震設防烈度為6度設計分組為第三組設計基本加速度值為0.05g交通條件:本工程在郊區(qū),可利用永久性公路,工具為汽車現(xiàn)場水電情況:工地附近有自來水和高壓線可供使用選用:建筑安裝工程統(tǒng)一勞動,山東省建筑工程預算315~1015C30C25HRB335HPB300240mm240mm×115mm×53mm,重度=18KN/㎡窗:鋼塑門窗=0.35KN/㎡門:=0.2KN/120框架梁高度宜取hb=(1/12-1/8),bb=(1/3-1/2)hb框架柱采用正方形柱宜取hc=(1/12-1/6)H0hc≥400mm比要求。基礎梁確定框架計算樓面(即層高)3.9m,由此可繪出框架計算簡圖如下圖:2.1主梁取b×h=300mm×600mm基礎梁b×h=250mm×400mm中跨梁框架梁柱的線剛度計注:對于框 框取I=2 邊框為I=1.5

左邊

=EI/l=3.0×107KN/㎡

1×0.3×0.63/6.6m=4.91×104i右邊跨=4.91×104KN?m=i

i中跨梁=EI/l=3.0×107KN/㎡×2×12×0.3×/3.6m=9×1041×0.404m31底層柱 ×0.404m3令i左上層柱=1.0,i左右邊跨=i中跨梁 i底層柱=恒載標準值防水層(剛性)30厚防水混凝 1.0KN/防水層(柔性)3厚改性瀝青卷材防水 找平層:15mm混合砂 0.015m×20KN/m3=0.30KN/找平層:15mmM2.5混合砂 0.015m×20KN/m3=0.30KN/找坡層:20厚水泥砂漿找 0.02m×14KN/m3=0.56KM/保溫層:80厚膨脹珍珠巖保溫 0.08m×14.5KN/m3=1.16KM/㎡結構承重層:120厚現(xiàn)澆鋼筋混凝土板0.12m×25KN/m3=3.00KN/㎡頂棚抹灰層:10厚M5.0混合砂 0.01m×17KN/m3=0.17KN/合計:6.89KN/水磨石地面(10200.65KN/結構承重層:120厚現(xiàn)澆鋼筋混凝土板0.12m×25KN/m3=3.00KN/㎡頂棚抹灰層:10M5.00.01m×17KN/m3=0.17KN/合計:3.82KN/現(xiàn)澆水磨石面層,水泥砂漿灌縫30厚1:3干硬性水泥砂漿,面上撒2㎜素水泥漿結合層一 1.16KN/結構承重層:1200.12m×25KN/m3=3.00KN/頂棚抹灰層:10厚M5.0混合砂 0.01×17KN/m3=0.17KN/合計:4.33KN/橫梁自 b×h=300㎜×600梁的自重: 25KN/m3×0.3m×(0.6m-0.12m)=3.6KN/m梁抹灰層:10厚混合砂漿0.01m×[(0.6m-合計基礎梁b×h=250×400基礎梁的自重: 25KN/m3×0.25m×(0.4m-0.12m)=1.75KN/m抹灰層:10厚混合砂 合計連系梁b×h=250㎜×550 25KN/m3柱尺寸b×h=400×400框架柱自重 25KN/m3×0.4m×0.4m=4.0柱側面抹灰層:10厚混合砂 0.01m×0.4m×4×17KN/m3合計 1.2m×0.24m×18KN/m3=5.18KN/m (3.6m-2.1m)×0.36KN/㎡=0.54KN/m外水泥粉刷外涂涂料:(3.6m-2.1m)×0.5KN/㎡合計縱墻 (5.0-2.1-0.6-0.4)×0.24×18N/m3水泥粉刷外涂涂料外 水泥粉刷內 合計 :3.3m×0.24m×18KN/m32.16(8)合計內隔墻 (5-2.1-0.6-0.4)×0.24×7.5KN/m3水泥粉刷 (5-2.1-0.6-0.4)×2×0.36KN/㎡合計內隔墻 (3.9-0.6)×0.24×7.5KN/m3水泥粉刷 (3.9-0.6-0.4)×2×0.36KN/㎡合計活荷載標準值根據《荷載規(guī)范》查得不上人屋面:0.5kN/㎡樓面:2.0kN/㎡走廊:2.5kN/Sk=1.0×0.2kN/㎡=0.2kN/取不上人屋面活荷載與雪荷載的最大值,0.5KN/m2豎向荷載作用下框架內力1)計算單元?、茌S線橫向框架進行計算,計算單元寬度為7.8m,該框架的樓面荷載根所示,則屋面板傳荷載用三角形計算。2.2(2)A-B

6.89kN/㎡×3.3m×850.5×3.3×2×=2.1854.33kN/㎡×3.3×852.0×3.3×2×8梁自重 A-B屋面梁:恒載=橫梁自重+屋面板傳荷=3.87kN/m+28.42kN/m=32.29活荷載=板傳荷 =2.1樓面梁:恒載=梁自重+樓面板傳荷 =3.87活荷載=板傳荷 8.25屋面恒載 6.89KN/㎡×1.8m×2×5/8 恒載 3.82KN/㎡×1.8m×2 2.0KN/㎡×1.8m×2×5/8=4.5KN/m梁自重 3.87恒載=梁自重+板傳荷 活荷載=板傳荷 恒載=梁自重+板傳荷 活荷載=板傳荷 4.5(4)C-DA-B(1100,1000.24m×1.1m×18KN/m3+25KN/㎡0.5KN/㎡6.67kN/m×7.8m+3.87kN/m×(7.8m-0.4m)+6.89頂層柱活荷載=板傳荷 =0.5×3.3×0.89×7.8=11.45=7.42kN/m×(7.8m-0.4m)+3.87kN/m×(7.8m-0.4m)+4.33標準層柱活載:板傳活 基礎頂面恒載=底層外縱墻自重+基礎梁自重=10.44kN/m×(7.8m-+2.5kN/m×(7.8m-0.4m)=95.76(6)B3.87kN/m×(7.8m-0.4m)+6.89kN/m×3.3×0.89×7.8m+6.89×1.8m×7.8m×0.89=272.57頂層柱活載=板傳荷 =0.5kN/㎡×0.89=22.90標準層柱恒載=梁自重+板傳荷載=3.87kN/m×(7.8m-0.4m)+4.33×3.3m×7.8m×0.89+4.33×1.8m×7.8m×0.89=181.94標準層柱活載=板傳活載=2.0kN/m2×7.8m×3.3m×0.89+2.0kN/m2=1.9kN/m×(7.8m-0.4m)+9.86kN/m2×(7.8m-0.4m)2.32.4(1)A-B:32.29KN/m標準層:21.73KN/mB-C:19.37KN/m標準層:12.47KN/mC-D:32.29KN/m標準層2.72.8梁端剪力:VVq

AB,BC

ql2Vm梁端彎,Vm

Ml

M右柱軸

NV式中:VP2.9將風載等效為集中荷載,運用以下進行風荷載的計算,可以簡化計算步驟W=W(hh) zsz j式中W0—基本風壓。W=0.6KN/200z—Bs—風荷載體型系數(shù)sz—風振系數(shù),可用T1=0.08N,0.085=0.40.25S,

=1+zhi—下層柱hj1100mm2B—迎風面寬度2.5z利用求風荷載作用下框架側==2.62~5D ibi-= 2D=icch/(ABCDD kN/m2.7D構件 ibi-=0.5 2D=icch/(ADkN/muj

v

vj-第j層總剪uj-第j jujuju=u 2.8wjvjDujuj54321u=uj側移驗算:層間側移最大值:1/702< (滿足要求風荷載標準值作用下的D用D第im

V=Dim

,V= D

i,i2.9A,Diy500040003000200010002.10B,Ciy50004000300020001000MC=Vim(1MC=Vim

Mb左

i= (M i

c下j

Mc上

ib右j= (M i

Mb總jMc下j1Mc上2.11A,DViD()()/DMc)McMb543212.12B,CViD))/DVMcMcMbMb(KN543212.13層梁端剪力柱軸力ABBCCDABCDVAB-VBC-5--4--3--2--1--重力荷載代表值計屋面永久荷載 50%屋面雪荷載 梁自重 3.87kN/m×(16.8-3×0.4)+3.87×(7.8-一榀框架半層柱自重 一榀框架半層墻自重 合計 梁自重 3.87kN/m×(16.8-3×0.4)+3.87×(7.8-一榀框架上下各半層柱自重 合計:(3) 一榀框架上下半層框架柱自 (3.9/2+5/2)×4.27kN/m×4一榀框架上下各半層墻體自重:總計2.11橫向框架側移剛度的計2.14A/D543212.15B/C截面柱高543212.16層次543212.17對位移位移值54321橫向水平作用下框架結構的內力和側移AD橫向作用計算及樓層剪力計T,和影響系數(shù)Tg amax=0.04(最大影響系數(shù)30m

=a1GeqGeq=0.85因為:Tg<T1=0.745s<5T

h2

g1a=1

g) 21FEK=α1Geq=0.0254因為1.4Tg=1.40.45s=063s<T1=0.745s,其頂部附 作用考慮在內,見下面的表2.14各層橫向作用及樓層剪GiHinGkHKi548382811nj—61—△Fn=δnFEK=0.0696下面兩個圖為各質點水 作用分布圖,及樓 剪力沿屋高分布圖2.12各質 作用分布圖 剪力沿房屋高度分布n水平作用下框架位移計算n框架結構的層間位移ui (ui)Vi/

計算。頂點位移ui按nnui

(ui

計算。計算過程如表(11)表中

e為各層的層間彈性位移角

表2.15橫向水平作用下的位移計ujFi/Diutujj53.494321<1/550=1.82103滿足式中uh=1/550,采用改進的反彎點法(即D)計算。計算柱的反彎點高度根據上下層高度變化查得修正值y2y3yh=(yoy1y2y32.16中柱(C邊柱(D5iaia1同中柱(B同邊柱(Ay1y0y1y2y3y2y34iaia1同中柱(B同邊柱(Ay1y0y1y2y3y2y33iaia1同中柱(B同邊柱(Ay1y0y1y2y3y2y32iaia1同中柱(B同邊柱(Ay1y0y1y2y3y2y31iaia1同中柱(B同邊柱(Ay1y0y1y2y3y2y3同中柱(B同邊柱(A柱端及梁端彎矩的上柱彎矩

=V(1

MD=Vyh

MlbMrbVb/NAND5----4---3--2-1-2.14梁端剪力計2.15各柱軸力計2.16MV,進而計算AB、BC,A、B2.182.19內力基本組合表(2.20(2.21(框柱2.22(框柱2.2312-4-6-2.24承載力調整系數(shù)梁框架梁配筋AC1s下部實配 sAB(1: 0.25βbh=0.25×1.0×14.3N/mm2×300mm×560mm=600.6KN>V( 按構造要求配箍,取雙肢箍φ8@2502.25層計算----115334433----1114344342.26層5151-600 /SVb-0.7ftbh0 1.25fvh 框架柱配筋計算以第一層框架柱B

cascC30

f14.3Nmm2Nmax(滿足要求

/b3650.914所以0.25c =0.25114.3N/mm2400mm365mm=521.95>BN大組合.本滿足要求,可不考慮撓度產生的附加彎矩e=ei+h/2-as=51.6mm+400/2- Nfbh2(10.5 346828.6914.340036520.518(10.518AsAs 1c0 b f'(ha' 360(365 第二組內力 滿足要求,可不考慮撓度產生的附加彎矩400/30ae400/30a

20mme=ei+h/2-as=45.97mm+400mm/2- Nfbh2(10.5 381.93313.6514.340036520.518(10.518AsAs 1 0 b f'(ha' 360(365 綜合兩組內力的計算結果,320(AA B1層最不利組合:剪跨比 所以(V fbhAsV

1 f

270N/mm2yvB5層:e0/h0=65.82mm/360mm=0.183<0.55,基礎設計與配筋計算地質2.27概況:本工程以一榀框架結構的B持力層,以下部分為下臥層。根據地質條件基礎埋深為2.1m,基礎高度為1m。C25f=11.9N/mm2.HRB335,f300N/mm2.黏土γ 回填土γG=17.8荷載1.a.27層厚用C10混凝土100mm,自基礎寬度左右兩邊各沿伸出100㎜. Ao

NkfaG

333.5220a=b=2.8m<3m,無須寬度修正.N

Gk=20×2.8×2.8×2.1=329.28Mk=158.03kN

Nk=1426.67

Vk=11.79ek

Mkk

l 6Pk,maxNkGk(16ek) k,minPPk,maxPk,min=223.89 Pk,max=266.43Pa,Pk,min=181.35kPa,PkPk=223.89kPa<faPk,max=266.43kPa<fa<1.2Pk,min取as=60h0=1000-60=940C25at

=400ab=400+2×940=2280am=(2280+400)/2=1340

A(lach)b(bbch

=取0.7hft(

=1119.78kN>

2.17A配筋基礎受力鋼筋采用HRB335級 ))鋼

綜上所述:兩個方向都選用分布 16@120(As=1676mm2)選用:10@200,

393mm2360mm2(滿足要求2.18工程18#23、建筑面積施工總規(guī)工期:7項目組織體施工1、先(地基與基礎、后地上(主體。先完成設施的敷設,如管道,215構(外墻,門窗)3搭設22必須將生活區(qū)與施工區(qū)分開但是兩者之間的距離不要太遠作為、4、施工機具。大型吊裝機械需用兩臺起重量分別為60t和80t的起重機,5、所需要的鋼材,木材,水泥三大材料,施工單位必須提前解決,避修建臨時道路和場對于教學樓工程的臨時道路和鋼筋加地,先鋪一層300厚土渣,再在上面鋪200厚碎石,最后在它的上面澆筑100mmC20細石混凝土,讓場地更加的土方開挖在挖槽和釬探中若發(fā)現(xiàn)有軟臥地基時,此時應該采取地基加固處理,加方法基坑的時間不宜過長挖好坑應及時清理清理之后及時澆筑混凝土,土方的棄土和回混凝土的質混凝土有多種強度等級。教學樓工程采用的是C30強度等級的,基礎混凝土C25的質量關鍵還是要養(yǎng)護好我國采用150×150×450的棱柱體作為抗壓強度現(xiàn)場拌制混ABCDE混凝采用單輪手推車自卸汽車主體垂直為塔式起重機混凝土泵注意:運距較小時,可以用單輪手推車來混凝土,運距較大時,就選自卸汽車速度比較快,適用于運量大而且運距遠時。攪拌站采用攪拌混凝土的澆樓板混凝土標高厚度的控制方“三程序控“試塊的制150mm骨料最大粒徑試塊邊長混凝土的養(yǎng)12施工縫的留1鋼筋工程采用熱軋帶肋鋼筋HRB335箍筋采用HPB300.鋼筋在使用之前,要經過調直,除銹,下料切斷,彎曲成形等步驟。180度彎鉤的鋼筋增加長度是3、柱子,墻的豎向鋼筋連接采用機械,梁板的帶肋鋼筋采用電渣壓力焊。雨天雪天不宜進行焊接。注意:電渣壓力焊適用于直徑14-32mm的HRB335,HRB40014-20mmHPB2354、鋼筋的綁扎一般采用20-22號鋼絲或鍍鋅鋼絲,鋼絲不宜過硬,要綁扎模8#教學樓工程模板采用壓型鋼模,柱模板底部應留有清理孔,柱2m模板80mm,80mm.B4,H5模板0.80.4米之間任意調18#30采用φ48×3.5,達到建筑頂部。腳手架底部要墊竹筏板。腳手架高度120mm3、墻底部應砌≥200mm451235、6質量抹灰施工準材料要找平層:1:3SBS80厚憎水型膨脹珍珠巖保溫塊由乙方自己,與材料承包商簽訂材料合同。外采用丙烯酸涂料,丙烯酸涂料的價格便宜,普遍采用。卷材防水屋面操作11:8,35mm20mm.23%3(施工時必須注意:在屋面800mm內鋪貼卷材防水時應采用滿粘法,常用方式:a淺色反射涂料保護層b屋面坡度必須準確。平整度過5mm。 2m715030質量保證體系和質量保證青建總公司是一家集工程總承包房地產開發(fā)與經營于一體的大型綜合安全生產保證措網,同時在樓層出處設置安全通道及圍護設施。2項目技術指導施工時也應該注重安全生產始終要堅“安全第一”的原則與目標為施工人員安全教育方面的知識并定期進行安全檢查拌機,鋼筋切斷機,汽車等,保證施工順利進行。46文明施工保證措3412、增收節(jié)支,減少的支345、模板作為周材料,保管好可重復使用6、對于物資的采購、要提前做好準備,施工現(xiàn)場管理工作非常重要,盡可7兩個多月的教學樓設計結束了,這也意味著大學四年接近尾聲。時間總是悄土木工程施工等學科學校也為畢業(yè)生安排每周八的指導課每位前去館復習了專業(yè)知識相關,并查閱了相關設計規(guī)范。如《混凝土結構設計規(guī)范《建筑抗震設計規(guī)范《地礎設計規(guī)范《建筑結構荷載規(guī)范》CADCAD接著是結構設計計算老師要求我們每周上八若遇到困惑時,老師會細心的給我們講解并且和我們一起學習。畢業(yè)設計結束,我們利用PKPM進行梁柱配筋圖的繪制,所有圖紙的修改工作和計算書的整理。此次畢業(yè)(1(2(3(4通過這次的設計讓我學到很多的同時了一下自己感覺到自己在某些方斷的督促鼓勵我們,記得老師一句話:要且學且設計。的確如此,設計(1)劉紹昆.徐光霞.模板工程安全·操作·技術.:中國建材工業(yè)李國強.李杰.蘇小卒編著.建筑結構抗震設計.第二版.中國建筑工業(yè)高福聚.編著.多層與建筑結構設計.大學華南理工大學.浙江大學.湖南大學合編.基礎工程.中國建筑工業(yè)東南大學.同濟大學.合編.混凝土結構.中國建筑工業(yè)白順果.崔自治.黨進謙主編.土力學.中國水利水電建筑地礎設計規(guī)范GB50007-2011(8)GB50011-2010(9)GB50009-2012(10)GB50010-2010(11)GB/T50001-StructuralSystemstoresist monlyUsedstructuralZahaWithloadsmeasuredintensofthousandskips,thereislittleroominthedesignofhigh-risebuildingsforexcessivelycomplexthoughts.Indeed,thebetterhigh-risebuildingscarrytheuniversaltraitsofsimplicityofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed,itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafewyearsagohave ecommonceintoday’stechnology.Omittingsomeconceptsthatarerelatedstrictlytothematerialsofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasfollows:Moment-resistingBracedframes,includingeccentricallybracedShearwalls,includingsteelteshearTube-in-tubeTube-in-tubeCore-inctiveCellularorbundled-tubeParticularlywiththerecenttrendtowardmorecomplexforms,butinresponsealsototheneedforincreasedstiffnesstoresistthesfromwindandearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further,forthetallerbuildings,themajoritiesarecomposedofinctiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontrary,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedevelopedwithoutthegeniusandtheleadershipofatalentedarchitect.Inanyevent,thebestofbothisneededtoformulateatrulyextraordinarydesignofahigh-risebuilding.Whilecomprehensivediscussionsofthesesevensystemsaregenerallyavailableintheliture,furtherdiscussioniswarrantedhere.Theessenceofthedesignprocessisdistributedthroughoutthediscussion.Moment-ResistingPerhapsthemostcommonlyusedsysteminlow-tomedium-risebuildings,themoment-resistingframe,ischaracterizedbylinearhorizontalandverticalmembersconnectedessentiallyrigidlyattheirjoints.Suchframesareusedasastand-alonesystemorincombinationwithothersystemssoastoprovidetheneededtohorizontalloads.Inthetallerofhigh-risebuildings,thesystemislikelytobefoundinappropriateforastand-alonesystem,thisbecauseofthedifficultyinmobilizingsufficientstiffnessunderlals.ysiscanbe plishedbySTRESS,STRUDL,orahostofotherappropriatecomputerprograms;ysisbytheso-calledportalmethodofthecantilevermethodhasnoceintoday’stechnology.Becauseoftheintrinsicflexibilityofthecolumn/girderintersection,andbecausepreliminarydesignsshouldaimtohighlightweaknessesofsystems,itisnotunusualtousecenter-to-centerdimensionsfortheframeinthepreliminaryysis.Ofcourse,inthelatterphasesofdesign,arealisticappraisalin-jointdeformationisessential.BracedThebracedframe,intrinsicallystifferthanthemoment–resistingframe,findsalsogreaterapplicationtohigher-risebuildings.Thesystemischaracterizedbylinearhorizontal,vertical,anddiagonalmembers,connectedsimplyorrigidlyattheirjoints.Itisusedcommonlyinconjunctionwithothersystemsfortallerbuildingsandasastand-alonesysteminlow-tomedium-risebuildings.Whiletheuseofstructuralsteelinbracedframesiscommon,concreteframesaremorelikelytobeofthelarger-scalevariety.OfspecialinterestinareasofhighseismicityistheuseoftheeccentricbracedAgain,ysiscanbebySTRESS,STRUDL,oranyoneofaseriesoftwo–orthreedimensionalysiscomputerprograms.Andagain,center-to-centerdimensionsareusedcommonlyinthepreliminaryysis.ShearTheshearwallisyetanotherstepforwardalongaprogressionofever-stifferstructuralsystems.Thesystemischaracterizedbyrelativelythin,generally(butnotalways)concreteelementsthatprovidebothstructuralstrengthandseparationbetweenbuildingfunctions.Inhigh-risebuildings,shearwallsystemstendtohavearelativelyhighaspectratio,thatis,theirheighttendstobelargecomparedtotheirwidth.Lackingtensioninthefoundationsystem,anystructuralelementislimitedinitsabilitytoresistoverturningmomentbythewidthofthesystemandbythegravityloadsupportedbytheelement.Limitedtoanarrowoverturning,Oneobvioususeofthesystem,whichdoeshavetheneededwidth,isintheexteriorwallsofbuilding,wheretherequirementforwindowsiskeptsmall.Structuralsteelshearwalls,generallystiffenedagainstbucklingbyaconcreteoverlay,havefoundapplicationwhereshearloadsarehigh.Thesystem,intrinsicallymoreeconomicalthansteelbracing,isparticularlyeffectiveincarryingshearloadsdownthroughthetallerfloorsintheareasimmediayabovegrade.Thesystemhasthefurtheradvantageofhavinghighductilityafeatureofparticularimportanceinareasofhighseismicity.Theysisofshearwallsystemsismadecomplexbecauseoftheinevitablepresenceoflargeopeningsthroughthesewalls.Preliminaryysiscanbebytruss-ogy,bythefiniteelementmethod,orbymakinguseofaproprietarycomputerprogramdesignedtoconsiderthe ction,orcoupling,ofshearFramedorBracedTheconceptoftheframedorbracedorbracedtubeeruptedintothetechnologywiththeIBMBuildinginPittsburgh,butwasfollowedimmediaywiththetwin110-storytowersoftheWorldTradeCenter,NewYorkandanumberofotherbuildings.Thesystemischaracterizedbythree–dimensionalframes,bracedframes,orshearwalls,formingaclosedsurfacemoreorlesscylindricalinnature,butofnearlyanynconfiguration.Becausethosecolumnsthatresistlalsarecedasfaraspossiblefromthecancroidsofthesystem,theoverallmomentofinertiaisincreasedandstiffnessisveryhigh.Theysisoftubularstructuresisdoneusingthree-dimensionalconcepts,orbytwo-dimensionalogy,wherepossible,whichevermethodisused,itmustbecapableofaccountingfortheeffectsofshearlag.Thepresenceofshearlag,detectedfirstinaircraftstructures,isaseriouslimitationinthestiffnessofframedtubes.Theconcepthaslimitedrecentapplicationsofframedtubestotheshearof60stories.Designershavedevelopedvarioustechniquesforreducingtheeffectsofshearlag,mostnoticeablytheuseofbelttrusses.Thissystemfindsapplicationinbuildingsperhaps40storiesandhigher.However,exceptpossibleaestheticconsiderations,belttrussesinterferewithnearlyeverybuildingfunctionassociatedwiththeoutsidewall;thetrussesarecedoftenatmechanicalfloors,mushtothedisapprovalofthedesignersofthemechanicalsystems.Nevertheless,asacost-effectivestructuralsystem,thebelttrussworkswellandwilllikelyfindapprovalfromdesigners.Numerousstudieshavesoughttooptimizethelocationofthesetrusses,withtheoptimumlocationverydependentonthenumberoftrussesprovided.Experiencewouldindicate,however,thatthelocationofthesetrussesisprovidedbytheoptimizationofmechanicalsystemsandbyaestheticconsiderations,astheeconomicsofthestructuralsystemisnothighlysensitivetobelttrusslocation.Thetubularframingsystemmobilizeseverycolumnintheexteriorwallinresistingover-turningandshearings.Theterm‘tube-in-tube’islargelyself-exnatoryinthatasecondringofcolumns,theringsurroundingthecentralservicecoreofthebuilding,isusedasaninnerframedorbracedtube.Thepurposeofthesecondtubeistoincreasetooverturningandtoincreaselalstiffness.Thetubesneednotbeofthesamecharacter;thatis,onetubecouldbeframed,whiletheothercouldbebraced.Inconsideringthissystem,isimportanttounderstandclearlythedifferencebetweentheshearandtheflexuralcomponentsofdeflection,thetermsbeingtakenfrombeamogy.Inaframedtube,theshearcomponentofdeflectionisassociatedwiththebendingdeformationofcolumnsandgirders(i.e,thewebsoftheframedtube)whiletheflexuralcomponentisassociatedwiththeaxialshorteningandlengtheningofcolumns(i.e,theflangesoftheframedtube).Inabracedtube,theshearcomponentofdeflectionisassociatedwiththeaxialdeformationofdiagonalswhiletheflexuralcomponentofdeflectionisassociatedwiththeaxialshorteningandlengtheningofFollowingbeamogy,ifnesurfacesremainne(i.e,thefloorslabs),thenaxialstressesinthecolumnsoftheoutertube,beingfartherformtheneutralaxis,willbesubstantiallylargerthantheaxialstressesintheinnertube.However,inthetube-in-tubedesign,whenoptimized,theaxialstressesintheinnerringofcolumnsmaybeashigh,orevenhigher,thantheaxialstressesintheouterring.Thisseeminganomalyisassociatedwithdifferencesintheshearingcomponentofstiffnessbetweenthetwosystems.Thisiseasiesttounder-standwheretheinnertubeisconceivedasabraced(i.e,shear-stiff)tubewhiletheoutertubeisconceivedasaframed(i.e,shear-flexible)Core ctiveCoreinctivestructuresareaspecialcaseofatube-in-tubewhereinthetwotubesarecoupledtogetherwithsomeformofthree-dimensionalspaceframe.Indeed,thesystemisusedoftenwhereintheshearstiffnessoftheoutertubeiszero.TheUnitedStatesSteelBuilding,Pittsburgh,illustratesthesystemverywell.Here,theinnertubeisabracedframe,theoutertubehasnoshearstiffness,andthetwosystemsarecouplediftheywereconsideredassystemspassinginastraightlinefromthe“hat”structure.Notethattheexteriorcolumnswouldbeimproperlymodelediftheywereconsideredassystemspassinginastraightlinefromthe“hat”tothefoundations;thesecolumnsareperhaps15%stifferastheyfollowtheelasticcurveofthebracedcore.Notealsothattheaxialsassociatedwiththelalsintheinnercolumnschangefromtensiontocompressionovertheheightofthetube,withtheinflectionpointatabout5/8oftheheightofthetube.Theoutercolumns,ofcourse,carrythesameaxialunderlalloadforthefullheightofthecolumnsbecausethecolumnsbecausetheshearstiffnessofthesystemisclosetozero.Thespacestructuresofoutriggergirdersortrusses,thatconnecttheinnertubetotheoutertube,arelocatedoftenatseverallevelsinthebuilding.TheAT&Theadquartersisanexampleofanastonishingarrayofinctiveelements:Thestructuralsystemis94ft (28.6m)wide,196ft(59.7m)long,and601ft(183.3m)high.Twoinnertubesareprovided,each31ft(9.4m)by40ft(12.2m),centered90ft(27.4m)apartinthelongdirectionofthebuilding.Theinnertubesarebracedintheshortdirection,butwithzeroshearstiffnessinthelongdirection.Asingleoutertubeisd,which

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論