




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter25 OptionValuationMcGraw-Hill/IrwinCopyright?2010byTheMcGraw-HillCompanies,Inc.Allrightsreserved.1KeyConceptsandSkillsUnderstandandbeabletousePut-CallParityBeabletousetheBlack-ScholesOptionPricingModelUnderstandtherelationshipsbetweenoptionpremiumsandstockprice,exerciseprice,timetoexpiration,standarddeviation,andtherisk-freerateUnderstandhowtheoptionpricingmodelcanbeusedtoevaluatecorporatedecisions25-22ChapterOutlinePut-CallParityTheBlack-ScholesOptionPricingModelMoreaboutBlack-ScholesValuationofEquityandDebtinaLeveragedFirmOptionsandCorporateDecisions:SomeApplications25-33ProtectivePutBuytheunderlyingassetandaputoptiontoprotectagainstadeclineinthevalueoftheunderlyingassetPaytheputpremiumtolimitthedownsideriskSimilartopayinganinsurancepremiumtoprotectagainstpotentiallossTrade-offbetweentheamountofprotectionandthepricethatyoupayfortheoption25-44AnAlternativeStrategyYoucouldbuyacalloptionandinvestthepresentvalueoftheexercisepriceinarisk-freeassetIfthevalueoftheassetincreases,youcanbuyitusingthecalloptionandyourinvestmentIfthevalueoftheassetdecreases,youletyouroptionexpireandyoustillhaveyourinvestmentintherisk-freeasset25-55ComparingtheStrategiesStock+PutIfS<E,exerciseputandreceiveEIfS≥E,letputexpireandhaveSCall+PV(E)PV(E)willbeworthEatexpirationoftheoptionIfS<E,letcallexpireandhaveinvestment,EIfS≥E,exercisecallusingtheinvestmentandhaveSValueatExpirationInitialPositionS<ES≥EStock+PutESCall+PV(E)ES25-66Put-CallParityIfthetwopositionsareworththesameattheend,theymustcostthesameatthebeginningThisleadstotheput-callparityconditionS+P=C+PV(E)Ifthisconditiondoesnothold,thereisanarbitrageopportunityBuythe“l(fā)ow”sideandsellthe“high”sideYoucanalsousethisconditiontofindthevalueofanyofthevariables,giventheotherthree25-77Example:FindingtheCallPriceYouhavelookedinthefinancialpressandfoundthefollowinginformation:Currentstockprice=$50Putprice=$1.15Exerciseprice=$45Risk-freerate=5%Expirationin1yearWhatisthecallprice?50+1.15=C+45/(1.05)C=8.2925-88ContinuousCompoundingContinuouscompoundingisgenerallyusedforoptionvaluationTimevalueofmoneyequationswithcontinuouscompoundingEAR=eq-1PV=FVe-RtFV=PVeRtPut-callparitywithcontinuouscompoundingS+P=C+Ee-Rt25-99Example:ContinuousCompoundingWhatisthepresentvalueof$100tobereceivedinthreemonthsiftherequiredreturnis8%,withcontinuouscompounding?PV=100e-.08(3/12)=98.02Whatisthefuturevalueof$500tobereceivedinninemonthsiftherequiredreturnis4%,withcontinuouscompounding?FV=500e.04(9/12)=515.2325-1010PCPExample:PCPwith
ContinuousCompoundingYouhavefoundthefollowinginformation;Stockprice=$60Exerciseprice=$65Callprice=$3Putprice=$7Expirationisin6monthsWhatistherisk-freerateimpliedbytheseprices?S+P=C+Ee-Rt60+7=3+65e-R(6/12).9846=e-.5RR=-(1/.5)ln(.9846)=.031or3.1%25-1111Black-ScholesOption
PricingModelTheBlack-ScholesmodelwasoriginallydevelopedtopricecalloptionsN(d1)andN(d2)arefoundusingthecumulativestandardnormaldistributiontablestddttRESddNEedSNCRtsss-=÷÷????è?++÷???è?=-=-1221212ln)()(25-1212Example:OPMYouarelookingatacalloptionwith6monthstoexpirationandanexercisepriceof$35.Thecurrentstockpriceis$45,andtherisk-freerateis4%.Thestandarddeviationofunderlyingassetreturnsis20%.Whatisthevalueofthecalloption?LookupN(d1)andN(d2)inTable25.3N(d1)=(.9761+.9772)/2=.9767N(d2)=(.9671+.9686)/2=.9679C=45(.9767)–35e-.04(.5)(.9679)C=$10.7525-1313Example:OPMinaSpreadsheetConsiderthepreviousexampleClickontheexcelicontoseehowthisproblemcanbeworkedinaspreadsheet25-1414PutValuesThevalueofaputcanbefoundbyfindingthevalueofthecallandthenusingput-callparityWhatisthevalueoftheputinthepreviousexample?P=C+Ee-Rt–SP=10.75+35e-.04(.5)–45=.06Notethataputmaybeworthmoreifexercisedthanifsold,whileacallisworthmore“alivethandead,”unlessthereisalargeexpectedcashflowfromtheunderlyingasset25-1515Europeanvs.AmericanOptionsTheBlack-ScholesmodelisstrictlyforEuropeanoptionsItdoesnotcapturetheearlyexercisevaluethatsometimesoccurswithaputIfthestockpricefallslowenough,wewouldbebetteroffexercisingnowratherthanlaterAEuropeanoptionwillnotallowforearlyexercise;therefore,thepricecomputedusingthemodelwillbetoolowrelativetothatofanAmericanoptionthatdoesallowforearlyexercise25-1616Table25.425-1717VaryingStockPriceandDeltaWhathappenstothevalueofacall(put)optionifthestockpricechanges,allelseequal?TakethefirstderivativeoftheOPMwithrespecttothestockpriceandyougetdelta.Forcalls:Delta=N(d1)Forputs:Delta=N(d1)-1Deltaisoftenusedasthehedgeratiotodeterminehowmanyoptionsweneedtohedgeaportfolio25-1818WorktheWebExampleThereareseveralgoodoptionscalculatorsontheInternetClickonthewebsurfertogotoandclickontheBasicCalculatorunderAnalysisServicesPricethecalloptionfromtheearlierexampleS=$45;E=$35;R=4%;t=.5;=.2Youcanalsochooseastockandvalueoptionsonaparticularstock25-1919Figure25.1InsertFigure25.1here25-2020Example:DeltaConsiderthepreviousexample:Whatisthedeltaforthecalloption?Whatdoesittellus?N(d1)=.9767ThechangeinoptionvalueisapproximatelyequaltodeltatimesthechangeinstockpriceWhatisthedeltafortheputoption?N(d1)–1=.9767–1=-.0233Whichoptionismoresensitivetochangesinthestockprice?Why?25-2121VaryingTimetoExpiration
andThetaWhathappenstothevalueofacall(put)aswechangethetimetoexpiration,allelseequal?TakethefirstderivativeoftheOPMwithrespecttotimeandyougetthetaOptionsareoftencalled“wasting”assets,becausethevaluedecreasesasexpirationapproaches,evenifallelseremainsthesameOptionvalue=intrinsicvalue+timepremium25-2222Figure25.2Insertfigure25.2here25-2323Example:TimePremiumsWhatwasthetimepremiumforthecallandtheputinthepreviousexample?CallC=10.75;S=45;E=35Intrinsicvalue=max(0,45–35)=10Timepremium=10.75–10=$0.75PutP=.06;S=45;E=35Intrinsicvalue=max(0,35–45)=0Timepremium=.06–0=$0.0625-2424VaryingStandardDeviation
andVegaWhathappenstothevalueofacall(put)whenwevarythestandarddeviationofreturns,allelseequal?TakethefirstderivativeoftheOPMwithrespecttosigmaandyougetvegaOptionvaluesareverysensitivetochangesinthestandarddeviationofreturnThegreaterthestandarddeviation,themorethecallandtheputareworthYourlossislimitedtothepremiumpaid,whilemorevolatilityincreasesyourpotentialgain25-2525Figure25.3Insertfigure25.3here25-2626VaryingtheRisk-FreeRate
andRhoWhathappenstothevalueofacall(put)aswevarytherisk-freerate,allelseequal?ThevalueofacallincreasesThevalueofaputdecreasesTakethefirstderivativeoftheOPMwithrespecttotherisk-freerateandyougetrhoChangesintherisk-freeratehaveverylittleimpactonoptionsvaluesoveranynormalrangeofinterestrates25-2727Figure25.4Insertfigure25.4here25-2828ImpliedStandardDeviationsAlloftheinputsintotheOPMaredirectlyobservable,exceptfortheexpectedstandarddeviationofreturnsTheOPMcanbeusedtocomputethemarket’sestimateoffuturevolatilitybysolvingforthestandarddeviationThisiscalledtheimpliedstandarddeviationOnlineoptionscalculatorsareusefulforthiscomputationsincethereisnotaclosedformsolution25-2929WorktheWebExampleUsetheoptionscalculatorattofindtheimpliedvolatilityofastockofyourchoiceClickonthewebsurfertogototogettherequiredinformationClickonthewebsurfertogotonuma,entertheinformationandfindtheimpliedvolatility25-3030EquityasaCallOptionEquitycanbeviewedasacalloptiononthefirm’sassetswheneverthefirmcarriesdebtThestrikepriceisthecostofmakingthedebtpaymentsTheunderlyingassetpriceisthemarketvalueofthefirm’sassetsIftheintrinsicvalueispositive,thefirmcanexercisetheoptionbypayingoffthedebtIftheintrinsicvalueisnegative,thefirmcanlettheoptionexpireandturnthefirmovertothebondholdersThisconceptisusefulinvaluingcertaintypesofcorporatedecisions25-3131ValuingEquityandChanges
inAssetsConsiderafirmthathasazero-couponbondthatmaturesin4years.Thefacevalueis$30million,andtherisk-freerateis6%.Thecurrentmarketvalueofthefirm’sassetsis$40million,andthefirm’sequityiscurrentlyworth$18million.SupposethefirmisconsideringaprojectwithanNPV=$500,000.Whatistheimpliedstandarddeviationofreturns?Whatisthedelta?Whatisthechangeinstockholdervalue?25-3232PCPandtheBalance
SheetIdentityRiskydebtcanbeviewedasarisk-freebondminusthecostofaputoptionValueofriskybond=Ee-Rt–PConsidertheput-callparityequationandrearrangeS=C+Ee-Rt–PValueofassets=valueofequity+valueofariskybondThisisjustthesameasthetraditionalbalancesheetidentityAssets=liabilities+equity25-3333MergersandDiversificationDiversificationisafrequentlymentionedreasonformergersDiversificationreducesriskand,therefore,volatilityDecreasingvolatilitydecreasesthevalueofanoptionAssumediversificationistheonlybenefittoamergerSinceequitycanbeviewedasacalloption,shouldthemergerincreaseordecreasethevalueoftheequity?Sinceriskydebtcanbeviewedasrisk-freedebtminusaputoption,whathappenstothevalueoftheriskydebt?Overall,whathashappenedwiththemergerandisitagooddecisioninviewofthegoalofstockholderwealthmaximization?25-3434ExtendedExample–PartIConsiderthefollowingtwomergercandidatesThemergerisfordiversificationpurposesonlywithnosynergiesinvolvedRisk-freerateis4%CompanyACompanyBMarketvalueofassets$40million$15millionFacevalueofzerocoupondebt$18million$7millionDebtmaturity4years4yearsAssetreturnstandarddeviation40%50%25-3535ExtendedExample–PartIIUsetheOPM(oranoptionscalculator)tocomputethevalueoftheequityValueofthedebt=valueofassets–valueofequityCompanyACompanyBMarketValueofEquity25.6819.867MarketValueofDebt14.3195.13325-3636ExtendedExample–PartIIITheassetreturnstandarddeviationforthecombinedfirmis30%Marketvalueassets(combined)=40+15=55Facevaluedebt(combined)=18+7=25CombinedFirmMarketvalueofequity34.120Marketvalueofdebt20.880TotalMVofequityofseparatefirms=25.681+9.867=35.548Wealthtransferfromstockholderstobondholders=35.548–34.120=1.428(exactincreaseinMVofdebt)25-3737M&AConclusionsMergersfordiversificationonlytransferwealthfromthestockholderstothebondholdersThestandarddeviationofreturnsontheassetsisreduced,therebyreducingtheoptionvalueoftheequityIfmanagement’sgoalistomaximizestockholderwealth,thenmergersforreasonsofdiversificationshouldnotoccur25-3838ExtendedExample:
LowNPV–PartIStockholdersmaypreferlowNPVprojectstohighNPVprojectsifthefirmishighlyleveragedandthelowNPVprojectincreasesvolatilityConsideracompanywiththefollowingcharacteristicsMVassets=40millionFaceValuedebt=25millionDebtmaturity=5yearsAssetreturnstandarddeviation=40%Risk-freerate=4%25-3939ExtendedExample:
LowNPV–PartIICurrentmarketvalueofequity=$22.657millionCurrentmarketvalueofdebt=$17.343millionProjectIProjectIINPV$3$1MVofassets$43$41Assetreturnstandarddeviation30%50%MVofequity$23.769$25.339MVofdebt$19.231$15.66125-4040ExtendedExample:
LowNPV–PartIIIWhichprojectshouldmanagementtake?EventhoughprojectBhasalowerNPV,itisbetterforstockholdersThefirmhasarelativelyhighamountofleverageWithprojectA,thebondholdersshareintheNPVbecauseitreducestheriskofbankruptcyWithprojectB,thestockholdersactuallyappropriateadditionalwealthfromthebondholdersforalargergaininvalue25-4141ExtendedExample:
NegativeNPV–PartIWe’veseenthatstockholdersmightpreferalowNPVtoahighone,butwouldtheyeverpreferanegativeNPV?Undercertaincircumstances,theymightIfthefirmishighlyleveraged,stockholdershavenothingtoloseifaprojectfailsandeverythingtogainifitsucceedsConsequently,theymaypreferaveryriskyprojectwithanegativeNPVbuthighpotentialrewards25-4242ExtendedExample:
NegativeNPV–PartIIConsiderthepreviousfirmTheyhaveoneadditionalprojecttheyareconsideringwiththefollowingcharacteristicsProjectNPV=-$2millionMVofassets=$38millionAssetreturnstandarddeviation=65%EstimatethevalueofthedebtandequityMVequity=$25.423millionMVdebt=$12.577million25-4343ExtendedExample:
NegativeNPV–PartIIIInthiscase,stockholderswouldactuallypreferthenegativeNPVprojecttoeitherofthepositiveNPVprojectsThestockholdersbenefitfromtheincreasedvolatilityassociatedwiththeprojecteveniftheexpectedNPVisnegativeThishappensbec
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 重磅!杭州公積金貸款合同政策調(diào)整來(lái)了
- 房地產(chǎn)買賣合同書(shū)
- 有限責(zé)任公司股東入股合同協(xié)議書(shū)
- 植物模擬考試題+答案
- 租賃合同擔(dān)保書(shū)范文
- 磚廠人力資源合同新政策
- 用人單位與勞動(dòng)者簽訂的長(zhǎng)期勞動(dòng)合同
- 醫(yī)療設(shè)備融資租賃合同
- 建筑合同工程設(shè)計(jì)補(bǔ)充協(xié)議模板
- 智慧城市建設(shè):大數(shù)據(jù)共享框架合同
- 中學(xué)生春季傳染病預(yù)防知識(shí)
- 住院透析患者操作流程
- 云倉(cāng)合同標(biāo)準(zhǔn)文本
- 清明節(jié)假期安全教育主題班會(huì) 課件
- 倒閘操作考試試題及答案
- 2025年小學(xué)生安全知識(shí)競(jìng)賽考試指導(dǎo)題庫(kù)300題(含答案)
- 專題5 壓強(qiáng) 2021年和2022年四川省成都市中考物理模擬試題匯編
- 春季預(yù)防傳染病課件
- 2025年領(lǐng)導(dǎo)干部任前廉政法規(guī)知識(shí)競(jìng)賽試題庫(kù)及答案(130題)
- 康復(fù)科制度及職責(zé)
- 《心理B證論文:淺談小學(xué)生自我監(jiān)控能力的培養(yǎng)》3100字
評(píng)論
0/150
提交評(píng)論