儲(chǔ)能未來(lái)研究-未來(lái)幾十年的主要學(xué)識(shí)_第1頁(yè)
儲(chǔ)能未來(lái)研究-未來(lái)幾十年的主要學(xué)識(shí)_第2頁(yè)
儲(chǔ)能未來(lái)研究-未來(lái)幾十年的主要學(xué)識(shí)_第3頁(yè)
儲(chǔ)能未來(lái)研究-未來(lái)幾十年的主要學(xué)識(shí)_第4頁(yè)
儲(chǔ)能未來(lái)研究-未來(lái)幾十年的主要學(xué)識(shí)_第5頁(yè)
已閱讀5頁(yè),還剩51頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

StorageFuturesStudy

KeyLearningsfortheComingDecades

NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin

StorageFuturesStudy

KeyLearningsfortheComingDecades

NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin

SUGGESTEDCITATION

Blair,Nate,ChadAugustine,WesleyCole,etal.2022.StorageFuturesStudy:KeyLearningsfortheComingDecades.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-7A40-81779.

/docs/fy22osti/81779

.pdf

StorageFuturesStudy:KeyLearningsfortheComingDecades|iii

NOTICE

ThisworkwasauthoredinpartbytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC.fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.SupportfortheworkwasalsoprovidedbytheInterstateRenewableEnergyCouncil,Inc.underAgreementSUB-2021-10440.TheviewsexpressedinthearticledonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.TheU.S.Governmentretainsandthepublisher,byacceptingthearticleforpublication,acknowledgesthattheU.S.Governmentretainsanonexclusive,paid-up,irrevocable,worldwidelicensetopublishorreproducethepublishedformofthiswork,orallowotherstodoso,forU.S.Governmentpurposes.

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

U.S.DepartmentforEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia

www.OSTI.gov

.

StorageFuturesStudy:KeyLearningsfortheComingDecades|iii

PREFACE

ThisreportistheseventhandfinalpublicationfromtheNationalRenewableEnergyLaboratory’s(NREL’s)StorageFuturesStudy(SFS).TheSFSisamultiyearresearchprojectthatexploreshowenergystoragecouldimpacttheevolutionandoperationoftheU.S.powersector.

Thestudyexaminedtheimpactofenergystoragetechnologyadvancementonthedeploymentofutility-scalestorageandtheadoptionofdistributedstorage,aswellasfuturepowersysteminfrastructureinvestmentandoperations.SomeofthequestionsNRELsoughttoanswerthroughoutthisstudyincluded:

?Howmightstoragecostandperformancechangeovertime?

?Whatistheroleofdiurnalenergystorageinthepowersector,evenabsentdriversorpoliciesthatincreaserenewableenergyshares?

?HowmuchdiurnalgridstoragemightbeeconomicallydeployedintheUnitedStates,bothattheutility-scaleanddistribution-scale?

?Whatfactorsmightdrivethatdeployment?

?Howmightincreasedlevelsofdiurnalstorageimpactgridoperations?

Researchfindingsandsupportingdatafromthestudyhavebeenpublishedinaseriesofsevenpublications,whicharelistedinthetableonthenextpage.Keylearningsfromthroughoutthestudyhaveculminatedinthisfinalreportthathelpsshapethevisionofenergystoragemovingforward.

TheSFSseriesprovidesdataandanalysisinsupportoftheU.S.DepartmentofEnergy’s(DOE’s)

EnergyStorageGrand

Challenge

,acomprehensiveprogramtoacceleratethedevelopment,commercialization,andutilizationofnext-generationenergystoragetechnologiesandsustainAmericangloballeadershipinenergystorage.TheEnergyStorageGrandChallengeemploysause-caseframeworktoensurestoragetechnologiescancost-effectivelymeetspecificneeds,anditincorporatesabroadrangeoftechnologiesinseveralcategories:electrochemical,electromechanical,thermal,flexiblegeneration,flexiblebuildings,andpowerelectronics.

Moreinformation,supportingdataassociatedwiththisreport,linkstootherreportsintheseries,andotherinformationaboutthebroaderstudyareavailableat

/analysis/storage-futures.html.

iv|StorageFuturesStudy:KeyLearningsfortheComingDecades

Table1

StorageFutureStudySeriesReports

Title

Description

RelationtoThisReport

TheFourPhasesof

Explorestherolesandopportunitiesfornew,

Providesbroadercontexton

StorageDeployment:

cost-competitivestationaryenergystorage

theimplicationsofthecostand

AFrameworkforthe

withaconceptualframeworkbasedonfour

performancecharacteristicsdiscussed

ExpandingRoleof

phasesofcurrentandpotentialfuturestorage

inthisreport,includingspecificgrid

StorageintheU.S.Power

deploymentandpresentsavaluepropositionfor

servicestheymayenableinvarious

System(Denholmetal.

energystoragethatcouldresultincost-effective

phasesofstoragedeployment.This

2020)

deploymentsreachinghundredsofgigawattsofinstalledcapacity.

frameworkissupportedbytheresultsofscenariosinthisproject.

EnergyStorage

Reviewsthecurrentcharacteristicsofa

Providesdetailedbackgroundabout

TechnologyModeling

broadrangeofmechanical,thermal,and

thebatteryandpumpedstorage

InputDataReport

electrochemicalstoragetechnologieswith

hydropowercostandperformance

(Augustineetal.2021)

applicationtothepowersector.Providescurrentandfutureprojectionsofcost,performancecharacteristics,andlocationalavailabilityofspecificcommercialtechnologiesalreadydeployed,includinglithium-ionbatterysystemsandpumpedstoragehydropower.

valuesusedasinputstothemodelingperformedinthisproject.

EconomicPotentialof

Assessestheeconomicpotentialforutility-scale

Thisreportfeaturesaseriesofcost-

DiurnalStorageinthe

diurnalstorageandtheeffectsthatstorage

drivengrid-scalecapacityexpansion

U.S.PowerSector(Frazier

capacityadditionscouldhaveonpowersystem

scenariosfortheU.S.gridthrough2050

etal.2021)

evolutionandoperations.

andexaminesthedriversforstoragedeployment.

DistributedStorage

Assessesthecustomeradoptionofdistributed

Analyzesdistributedstorageadoption

CustomerAdoption

diurnalstorageforseveralfuturescenariosand

scenariostotestthevariouscost

Scenarios(Prasannaet

theimplicationsforthedeploymentofdistributed

trajectoriesandassumptionsinparallel

al.2021)

generationandpowersystemevolution.

tothegridstoragedeployments

modeledinthisreport.

TheChallengesof

Describesthechallengeofasingleuniform

Advancesdialoguearoundthemeaning

DefiningLong-Duration

definitionforlong-durationenergystorageto

oflong-durationenergystorageand

EnergyStorage

reflectbothdurationandapplicationofthe

howitfitsintofuturepowersystems.

(Denholmetal.2021)

storedenergy.

GridOperational

Assessestheoperationandassociatedvalue

Considerstheoperationalimplicationsof

Implicationsof

streamsofenergystorageforseveralpower

storagedeploymentandgridevolution

WidespreadStorage

systemevolutionscenariosandexplores

scenariostoexamineandexpandonthe

Deployment(Jorgenson

theimplicationsofseasonalstorageongrid

grid-scalescenarioresultsfoundwith

etal.2022)

operations.

NREL’sRegionalEnergyDeploymentSystemmodelinthisreport.

StorageFuturesStudy:

Synthesizesandsummarizesfindingsfromthe

Thisreport.

KeyLearningsForthe

entireseriesandrelatedanalysesandreports

ComingDecades

andidentifiestopicsforfurtherresearch.

StorageFuturesStudy:KeyLearningsfortheComingDecades|v

ACKNOWLEDGMENTS

WewouldliketoacknowledgethecontributionsoftheentireStorageFuturesStudyteam(listedascoauthors)forthisreport,aswellasourDOEOfficeofStrategicAnalysiscolleaguesascorecontributors,specificallyKaraPodkaminer,PaulSpitsen,andSarahGarman.FeedbackandcontributionsalsocamefromotherNRELstaff,includingGianPorro,DougArent,KarlynnCory,AdamWarren,ChadHunter,EvanReznicek,MichaelPenev,GregStark,VigneshRamasamy,DavidFeldman,GregBrinkman,andTrieuMai.Wealsowouldliketothankourtechnicalreviewcommittee(seeTable2)fortheirinput.

Finally,weacknowledgevarioustechnicalexpertsatDOE,includingEricHsieh,AlejandroMoreno,andmanyothers,fortheiradditionalthoughtsandsuggestionsthroughouttheStorageFuturesStudy,asnotedintheindividualreports.

Table2

TechnicalReviewCommitteeMembers

DougArent

(NREL)–TRCChair

PaulAlbertus

(UniversityofMaryland)

InezAzevedo

(StanfordUniversity)

RyanWiser

(LawrenceBerkeley

NationalLaboratory)

SueBabinec(ArgonneNationalLaboratory)

AaronBloom

(NextEra)

ChrisNamovicz

(U.S.EnergyInformation

Administration)

HowardGruenspecht

(MassachusettsInstitute

ofTechnology)

ArvindJaggi

(NYIndependentSystemOperator)

KeithParks

(XcelEnergy)

KiranKumaraswamy

(Fluence)

GrangerMorgan(CarnegieMellonUniversity)

CaraMarcy

(U.S.Environmental

ProtectionAgency)

MaheshMorjaria

(TerabaseEnergy)

OliverSchmidt(ImperialCollege-London)

VincentSprenkle

(PacificNorthwest

NationalLaboratory)

JohnGavan(ColoradoPUCCommissioner)

vi|StorageFuturesStudy:KeyLearningsfortheComingDecades

LISTOF

BESS

DOE

DR

FC

GW

GWh

H2

H2Elec-saltcavern-CT

H2Elec-saltcavern-FC

kW

kWh

LIB

NG

NREL

PV

RE

SFS

VRE

ACRONYMS

—batteryenergystoragesystem(s)

—U.S.DepartmentofEnergy

—distributedresource

—fuelcell

—gigawatts

—gigawatt-hour

—hydrogen(asastoragefluid)

—hydrogenstorageusingelectrolyzers,saltcaverns,andcombustionturbines

—hydrogenstorageusingelectrolyzers,saltcaverns,andstationaryfuelcells

—kilowatt

—kilowatt-hour(eitheraunitofenergyoraunitofstoragecapacity)

—lithium-ionbattery

—naturalgas

—NationalRenewableEnergyLaboratory

—photovoltaics

—renewableenergy

—StorageFuturesStudy

—variablerenewableenergy

StorageFuturesStudy:KeyLearningsfortheComingDecades|vii

TABLEOFCONTENTS

TheComingDecadesofEnergyStorageDeployment 1

KEYLEARNING1:StorageIsPoisedforRapidGrowth 3

KEYLEARNING2:RecentStorageCostReductionsAreProjectedToContinue,withLithium-IonBattery

ContinuingToLeadinMarketShareforSomeTime 4

KEYLEARNING3:TheAbilityofStorageToProvideFirmCapacityIsaPrimaryDriver

forCost-CompetitiveDeployment 7

KEYLEARNING4:StorageIsNottheOnlyFlexibilityOption,butItsDecliningCostsHaveChanged

WhenItIsDeployedVersusOtherOptions 8

KEYLEARNING5:StorageandPVComplementEachOther 10

KEYLEARNING6:CostReductionsandtheValueofBackupPowerIncreasetheAdoptionof

Building-levelStorage 12

KEYLEARNING7:StorageDurationsWillLikelyIncreaseasDeploymentsIncrease 13

KEYLEARNING8:SeasonalStorageTechnologiesBecomeEspeciallyImportantfor100%

CleanEnergySystems 14

ConclusionsandRemainingUncertainties 16

References 18

viii|StorageFuturesStudy:KeyLearningsfortheComingDecades

LISTOFFIGURES

Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,

deployingarangeofdurations(left)

3

Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeand

areexpectedtocontinuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectric

vehicledemand

4

Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions 5

Figure4.Capitalcostforenergy($/kWh)versuscapitalcostforcapacity($/kW)

forvarioustechnologies

6

Figure5.Restrictingservicesthatstoragecanprovideshowscapacityservicesaremoreimportant

thantime-shiftingoroperatingreservestoachievestorage’smaximumpotential 7

Figure6.Theflexibilitysupplycurve

8

Figure7.Increasingloadflexibilityandresponsivedemandreducestheneedforstorage

capacityin2050forthelowREcostandlowRE/batterycostscenarioswithandwithout

highdemandresponsecontribution

9

Figure8.IncreaseddeploymentofPVdemonstratesthereduceddurationofnetloadpeaks 10

Figure9.IncreaseddeploymentofPVdemonstratesthereduceddurationrequiredfor

energystoragetoprovidefirmcapacity

10

Figure10.Nationalpeakingcapacitypotentialfordiurnalstorage(upto12hours)asafunction

ofPVcontribution(left)andnationaldiurnalenergytime-shiftingpotentialasafunction

ofPVcontribution(right)

11

Figure11.Storagecapacityasafunctionofrenewableenergycontribution(%) 11

Figure12.Projectedadoptionofdistributedstorage(GWof2-hourdurationstoragesystemscoupledwith

PV)increasesovertimeascostsdecrease,withasignificantjumpiftherearebreakthroughPVcosts 12

Figure13.Asstoragedeploymentincreases,thenetloadpeakwidens,requiringlonger-duration

storagetoprovidefirmcapacity

13

Figure14.Theaveragedurationofnewstoragedeploymentsincreasesasthetotalamountof

storagecapacitygrows,uptoapproximately200GW(usingreferencestoragecosts) 13

Figure15.Seasonalmismatchofrenewableenergysupplyandelectricitydemand

demonstratesthepotentialopportunityforseasonalstorage

14

Figure16.Capacityandgenerationin2050forthescenariosthatreachthe100%requirement 15

LISTOFTABLES

Table1.StorageFutureStudySeriesReports

v

Table2.TechnicalReviewCommitteeMembers

vi

StorageFuturesStudy:KeyLearningsfortheComingDecades|ix

THECOMINGDECADESOFENERGYSTORAGEDEPLOYMENT

Energystorageisverylikelytobecomeacriticalelementofalow-carbon,flexible,resilientfutureelectricgrid.

Inthepastseveralyears,therehasbeenadramaticincreaseofvariablerenewablegenerationintheU.S.powersector,andsignificantgrowthisanticipatedinthefuture.Inaddition,therehasbeenincreasedfocusintheUnitedStatesandgloballyonaddressingnumerousinstancesofpowersystemdisruptionsandincreasedfocusonresearchandanalysisonpowersystemreliabilityandresiliencywithincreasingamountsofvariablerenewablepower—emphasizingtheimportanceofcleanenergydeploymentwhilemaintainingareliablepowersystem.

Atthesametime,therehavebeensignificantcostdeclinesinenergystoragetechnologies(particularlybatteries)overthepastfewyears,andmanymorestoragetechnologiesareunderdevelopment.Theseconvergingfactorshaveincreasedattentiononthepotentialroleofenergystorageasacriticalassetfordecarbonizationandtoensurereliableelectricityfortheevolvinggrid.

Energystorageoffersmanypotentialbenefitstothegrid.ItcouldprovidegenerationtocomplementthedeploymentofwindandsolarPV,providingcapacitywhentheseresourceshavereducedavailability.Whenusedinconjunctionwithrenewableenergy(RE)orothercleanenergyresources,energystoragehastheabilitytoreducegreenhousegasemissions.

Energystoragecanalsoincreaseutilizationofnewandexistingtransmissionlines,whileoffsettingtheneedtobuildnewpowerplantstoprovidepeakingcapacityoroperatingreserves.Finally,distributedenergystoragecanreducestressonthedistributiongridduringpeakdemandtimes.Thisflexibilitywillbeimportantwiththeanticipatedproliferationofelectricvehiclesandpotentialincreasedloadfromotherend-useelectrification.

Asthecostofenergystoragetechnologiescontinuestodeclineandthegridintegratesmorevariablerenewablegeneration,ourmodelingindicatessignificantincreaseddeploymentofenergystoragedeploymentintheelectricsysteminthecomingdecades.Questionsarise,suchashowcouldthisimpacthowthegridoperatesandevolvesoverthecomingdecades?

Becauseenergystoragecanimpactfeaturesofelectricitygeneration,transmission,anddistribution,quantifyingthevalueofstorageismorecomplicatedthanquantifyingthevalueofotherassetslikesolarPVorwindenergythatarepurelygeneration.ThroughtheStorageFuturesStudy(SFS),theNationalRenewableEnergyLaboratory(NREL)hasaimedtoincreaseunderstandingofhowstorageaddsvalue,andhowmuch,tothepowersystem,howmuchstoragecouldbeeconomicallydeployed,andhowthatdeploymentmightimpactpowersystemevolutionandoperations.

TheStorageFuturesStudystartedwithdefining

aframeworkoffourphasesofincreasingenergy

storagedeploymentanddurationovertime,moved

1|StorageFuturesStudy:KeyLearningsfortheComingDecades

StorageFuturesStudy:KeyLearningsfortheComingDecades|2

ontocreateasetoflong-termprojectionsfordiurnal(<12hours)storagedeploymentintheUnitedStates,andthenapplieddetailedproductioncostandagent-basedmodelingtobetterunderstandtheroleofstorage.Thekeyconclusionoftheresearchisthatdeploymentofenergystoragehasthepotentialtoincreasesignificantly—reachingatleastfivetimestoday’scapacityby2050—anditwillplayanintegral

roleindeterminingthecost-optimalgridmixofthefuture.DrawingontheanalysisacrosstheSFS,previouswork,andadditionalanalysisforthisreport,thestudyidentifiedeightspecifickeylearningsaboutthefutureofenergystorageanditsimpactonthepowersystem.Thesekeylearningscanhelppolicymakers,technologydevelopers,andgridoperatorsprepareforthecomingwaveofstoragedeployment:

KEYLEARNING1:

Storageispoisedforrapidgrowth.

KEYLEARNING2:

Recentstoragecostreductionsareprojectedtocontinue,withlithium-ionbatteries(LIBs)continuingtoleadinmarketshareforsometime.

KEYLEARNING3:

Theabilityofstoragetoprovidefirmcapacityisaprimarydriverofcost-competitivedeployment.

KEYLEARNING4:

Storageisnottheonlyflexibilityoption,butitsdecliningcostshavechangedwhenitisdeployedversusotheroptions.

KEYLEARNING5:

Storageandphotovoltaics(PV)complementeachother.

KEYLEARNING6:

Costreductionsandthevalueofbackuppowerincreasetheadoptionofbuilding-levelstorage.OPTIONOFBUILDING-LEVELSTORAGE.

KEYLEARNING7:

Storagedurationswilllikelyincreaseasdeploymentsincrease.

KEYLEARNING8:

Seasonalstoragetechnologiesbecomeespeciallyimportantfor100%cleanenergysystems.

Eachofthefollowingsectionsprovidesadditionalinsightsintotheeightkeylearnings,andweconcludewithremaininguncertaintiesthatcouldbeexploredtofurtheradvanceunderstandingoftheroleofstorageintheevolvingU.S.powergrid.

KEYLEARNING1

StorageIsPoisedforRapidGrowth

TheSFSreportEconomicPotentialofDiurnalStorageintheU.S.PowerSector(Frazieretal.2021)demonstratesthegrowingcost-competitivenessofenergystorage.Usingastate-of-the-artnational-scalecapacityexpansionmodel,wefindthatdiurnalstorage(<12hoursofduration)iseconomicallycompetitiveacrossavarietyofscenarioswitharangeofcostandperformanceassumptionsforstorage,wind,solarPV,andnaturalgas(NG).

Figure1illustratesthatacrossallscenarios,deploymentsofnewstoragerangesfrom100to650gigawatts(GW)ofnewcapacity.

Thislargerangeisdrivenbyavarietyoffactors,includingstoragecosts(KeyLearning2),naturalgasprices,andrenewableenergycostadvancement,buteventhemostconservativecaserepresentsafivefoldincreasecomparedtotheinstalledstoragecapacityof23GWin2020(themajorityofwhichispumpedstoragehydropower).

Itisimportanttonotethatsignificantdeploymentsofbothrenewableenergyandstoragearedeployedevenwithoutadditionalcarbonpolicies,demonstratingtheirincreasingcost-competitivenessasresourcesforprovisionofenergyandcapacityservices.

Modeledscenariosresultinsignificant,butnotcomplete,decarbonization,wherepowersectoremissionsarereducedby46%–82%comparedto2005,andvariablerenewableenergy(VRE)reachessharesof43%–81%nationallyby2050.Durationswith4–6hoursarethemostcommon,drivenbytheinherentsynergywithPV(KeyLearning5),butlongerdurationsareoftendeployedinthelatermodeledyears(KeyLearning7).TheprimarydriversbehindstoragegrowthandtheevolutionofstoragedevelopmentwereexploredinFrazieretal.(2021)andotherSFSreports—ashighlightedinthefollowingkeylearnings.

Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,deployingarangeofdurations(left)Thistranslatestoabout1,200gigawatt-hours(GWh)ofstoredenergy(right),withawiderangeofdeployments.

3|StorageFuturesStudy:KeyLearningsfortheComingDecades

StorageFuturesStudy:KeyLearningsfortheComingDecades|4

KEYLEARNING2

RecentStorageCostReductionsAreProjectedToContinue,with

Lithium-IonBatteryContinuingToLeadinMarketShareforSomeTime

TheSFSreportEnergyStorageTechnologyModelingInputDataReportdiscussesthefuturecostprojectionsforutility-scalebatteryenergystoragesystemsandothertechnologiesthatdrivemuchoftheanticipatedgrowthidentifiedinKeyLearning1.

Mostofthestationarystoragedeploymentsthatwilloccurintheneartermareexpectedtobeintheformofbatteries,particularlyLIBs.ThedominanceofLIBs,atleast

inthenearterm,hasbeendrivenbygrowthofthistechnologyacrossmultiplemarkets,includingconsumerelectronics,stationaryapplications,andespeciallyelectricvehicles.

Figure2providesanexampleofhistoricalandprojectedfuturecostsoflithium-ionbatterypacks,illustratingarapiddeclineinrecentyears.Thechartalsoshowsthevastmajorityofbatterydeploymentsarefortransportationapplications,whichwill

likelybethemostimportantdriversofbatterytechnologydevelopmentandbatterycostdeclinesingeneral.

Weusedavarietyoffuturecostprojectionsforutility-scalestationarybatteryenergystoragesystems(BESS)toevaluatetotalsystemcost,includinginverter,balanceofsystem,andinstallation.Anexampleofacostprojectionforbatterieswith2–10hoursofusabledurationthatisusedintheSFSreferencescenarioisshowninFigure3.

Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeandareexpectedto

continuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectricvehicledemand.

2021valuesfromBloombergNEF3are$132/kW.DataSource:FrithandGoldie-Scot2019

3“BatteryPackPricesFalltoanAverageof$132/kWh,ButRisingCommodityPricesStarttoBite,”BloombergNEF,November30,2021,

/blog/

battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/

.

Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions.Theleftpanelmeasurescostona$/kWh(usableenergy)basis,whiletherightpanelmeasurescostsbasedon$/kW(maximumdirectcurrent[DC]outputpower).Projectionsassumea60-megawattDCproject.

Theleftcurveshowsthetotalcostperinstalledkilowatt-hour(kWh)ofusablecapacity,whichisacommonmeasureusedinthebatteryindustry.Thisisthetotalcostofinstallation,whichforstationaryapplicationsincludesboththepower-relatedcosts(associatedwiththeequipmentthatconvertsgridelectricityintostoredelectricityandbackagain)andtheenergy-relatedcosts(thestoragemedium).Thepower-relatedcoststypicallydonotscalewithduration,meaningtheyarethesamefora2-hoursystemanda10-hoursystem,whichiswhythecostsperkWhdecreaseasdurationincreases(powercostsaredividedoveralargernumberofkWh).(ThisbreakdownofcostsforpoweranddurationisillustratedinFigure4.)Therightcurveshowsthecostperkilowatt(kW),whichisamoreconventionalmeasureofpowerplantcostsusedintheutilityindustry.Bythismeasure,costsin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論