版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
StorageFuturesStudy
KeyLearningsfortheComingDecades
NateBlair,ChadAugustine,WesleyCole,PaulDenholm,WillFrazier,MadelineGeocaris,JennieJorgenson,KevinMcCabe,KaraPodkaminer,AshreetaPrasanna,BenSigrin
SUGGESTEDCITATION
Blair,Nate,ChadAugustine,WesleyCole,etal.2022.StorageFuturesStudy:KeyLearningsfortheComingDecades.Golden,CO:NationalRenewableEnergyLaboratory.NREL/TP-7A40-81779.
/docs/fy22osti/81779
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
NOTICE
ThisworkwasauthoredinpartbytheNationalRenewableEnergyLaboratory,operatedbyAllianceforSustainableEnergy,LLC.fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.SupportfortheworkwasalsoprovidedbytheInterstateRenewableEnergyCouncil,Inc.underAgreementSUB-2021-10440.TheviewsexpressedinthearticledonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government.TheU.S.Governmentretainsandthepublisher,byacceptingthearticleforpublication,acknowledgesthattheU.S.Governmentretainsanonexclusive,paid-up,irrevocable,worldwidelicensetopublishorreproducethepublishedformofthiswork,orallowotherstodoso,forU.S.Governmentpurposes.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentforEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia
www.OSTI.gov
.
StorageFuturesStudy:KeyLearningsfortheComingDecades|iii
PREFACE
ThisreportistheseventhandfinalpublicationfromtheNationalRenewableEnergyLaboratory’s(NREL’s)StorageFuturesStudy(SFS).TheSFSisamultiyearresearchprojectthatexploreshowenergystoragecouldimpacttheevolutionandoperationoftheU.S.powersector.
Thestudyexaminedtheimpactofenergystoragetechnologyadvancementonthedeploymentofutility-scalestorageandtheadoptionofdistributedstorage,aswellasfuturepowersysteminfrastructureinvestmentandoperations.SomeofthequestionsNRELsoughttoanswerthroughoutthisstudyincluded:
?Howmightstoragecostandperformancechangeovertime?
?Whatistheroleofdiurnalenergystorageinthepowersector,evenabsentdriversorpoliciesthatincreaserenewableenergyshares?
?HowmuchdiurnalgridstoragemightbeeconomicallydeployedintheUnitedStates,bothattheutility-scaleanddistribution-scale?
?Whatfactorsmightdrivethatdeployment?
?Howmightincreasedlevelsofdiurnalstorageimpactgridoperations?
Researchfindingsandsupportingdatafromthestudyhavebeenpublishedinaseriesofsevenpublications,whicharelistedinthetableonthenextpage.Keylearningsfromthroughoutthestudyhaveculminatedinthisfinalreportthathelpsshapethevisionofenergystoragemovingforward.
TheSFSseriesprovidesdataandanalysisinsupportoftheU.S.DepartmentofEnergy’s(DOE’s)
EnergyStorageGrand
Challenge
,acomprehensiveprogramtoacceleratethedevelopment,commercialization,andutilizationofnext-generationenergystoragetechnologiesandsustainAmericangloballeadershipinenergystorage.TheEnergyStorageGrandChallengeemploysause-caseframeworktoensurestoragetechnologiescancost-effectivelymeetspecificneeds,anditincorporatesabroadrangeoftechnologiesinseveralcategories:electrochemical,electromechanical,thermal,flexiblegeneration,flexiblebuildings,andpowerelectronics.
Moreinformation,supportingdataassociatedwiththisreport,linkstootherreportsintheseries,andotherinformationaboutthebroaderstudyareavailableat
/analysis/storage-futures.html.
iv|StorageFuturesStudy:KeyLearningsfortheComingDecades
Table1
StorageFutureStudySeriesReports
Title
Description
RelationtoThisReport
TheFourPhasesof
Explorestherolesandopportunitiesfornew,
Providesbroadercontexton
StorageDeployment:
cost-competitivestationaryenergystorage
theimplicationsofthecostand
AFrameworkforthe
withaconceptualframeworkbasedonfour
performancecharacteristicsdiscussed
ExpandingRoleof
phasesofcurrentandpotentialfuturestorage
inthisreport,includingspecificgrid
StorageintheU.S.Power
deploymentandpresentsavaluepropositionfor
servicestheymayenableinvarious
System(Denholmetal.
energystoragethatcouldresultincost-effective
phasesofstoragedeployment.This
2020)
deploymentsreachinghundredsofgigawattsofinstalledcapacity.
frameworkissupportedbytheresultsofscenariosinthisproject.
EnergyStorage
Reviewsthecurrentcharacteristicsofa
Providesdetailedbackgroundabout
TechnologyModeling
broadrangeofmechanical,thermal,and
thebatteryandpumpedstorage
InputDataReport
electrochemicalstoragetechnologieswith
hydropowercostandperformance
(Augustineetal.2021)
applicationtothepowersector.Providescurrentandfutureprojectionsofcost,performancecharacteristics,andlocationalavailabilityofspecificcommercialtechnologiesalreadydeployed,includinglithium-ionbatterysystemsandpumpedstoragehydropower.
valuesusedasinputstothemodelingperformedinthisproject.
EconomicPotentialof
Assessestheeconomicpotentialforutility-scale
Thisreportfeaturesaseriesofcost-
DiurnalStorageinthe
diurnalstorageandtheeffectsthatstorage
drivengrid-scalecapacityexpansion
U.S.PowerSector(Frazier
capacityadditionscouldhaveonpowersystem
scenariosfortheU.S.gridthrough2050
etal.2021)
evolutionandoperations.
andexaminesthedriversforstoragedeployment.
DistributedStorage
Assessesthecustomeradoptionofdistributed
Analyzesdistributedstorageadoption
CustomerAdoption
diurnalstorageforseveralfuturescenariosand
scenariostotestthevariouscost
Scenarios(Prasannaet
theimplicationsforthedeploymentofdistributed
trajectoriesandassumptionsinparallel
al.2021)
generationandpowersystemevolution.
tothegridstoragedeployments
modeledinthisreport.
TheChallengesof
Describesthechallengeofasingleuniform
Advancesdialoguearoundthemeaning
DefiningLong-Duration
definitionforlong-durationenergystorageto
oflong-durationenergystorageand
EnergyStorage
reflectbothdurationandapplicationofthe
howitfitsintofuturepowersystems.
(Denholmetal.2021)
storedenergy.
GridOperational
Assessestheoperationandassociatedvalue
Considerstheoperationalimplicationsof
Implicationsof
streamsofenergystorageforseveralpower
storagedeploymentandgridevolution
WidespreadStorage
systemevolutionscenariosandexplores
scenariostoexamineandexpandonthe
Deployment(Jorgenson
theimplicationsofseasonalstorageongrid
grid-scalescenarioresultsfoundwith
etal.2022)
operations.
NREL’sRegionalEnergyDeploymentSystemmodelinthisreport.
StorageFuturesStudy:
Synthesizesandsummarizesfindingsfromthe
Thisreport.
KeyLearningsForthe
entireseriesandrelatedanalysesandreports
ComingDecades
andidentifiestopicsforfurtherresearch.
StorageFuturesStudy:KeyLearningsfortheComingDecades|v
ACKNOWLEDGMENTS
WewouldliketoacknowledgethecontributionsoftheentireStorageFuturesStudyteam(listedascoauthors)forthisreport,aswellasourDOEOfficeofStrategicAnalysiscolleaguesascorecontributors,specificallyKaraPodkaminer,PaulSpitsen,andSarahGarman.FeedbackandcontributionsalsocamefromotherNRELstaff,includingGianPorro,DougArent,KarlynnCory,AdamWarren,ChadHunter,EvanReznicek,MichaelPenev,GregStark,VigneshRamasamy,DavidFeldman,GregBrinkman,andTrieuMai.Wealsowouldliketothankourtechnicalreviewcommittee(seeTable2)fortheirinput.
Finally,weacknowledgevarioustechnicalexpertsatDOE,includingEricHsieh,AlejandroMoreno,andmanyothers,fortheiradditionalthoughtsandsuggestionsthroughouttheStorageFuturesStudy,asnotedintheindividualreports.
Table2
TechnicalReviewCommitteeMembers
DougArent
(NREL)–TRCChair
PaulAlbertus
(UniversityofMaryland)
InezAzevedo
(StanfordUniversity)
RyanWiser
(LawrenceBerkeley
NationalLaboratory)
SueBabinec(ArgonneNationalLaboratory)
AaronBloom
(NextEra)
ChrisNamovicz
(U.S.EnergyInformation
Administration)
HowardGruenspecht
(MassachusettsInstitute
ofTechnology)
ArvindJaggi
(NYIndependentSystemOperator)
KeithParks
(XcelEnergy)
KiranKumaraswamy
(Fluence)
GrangerMorgan(CarnegieMellonUniversity)
CaraMarcy
(U.S.Environmental
ProtectionAgency)
MaheshMorjaria
(TerabaseEnergy)
OliverSchmidt(ImperialCollege-London)
VincentSprenkle
(PacificNorthwest
NationalLaboratory)
JohnGavan(ColoradoPUCCommissioner)
vi|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOF
BESS
DOE
DR
FC
GW
GWh
H2
H2Elec-saltcavern-CT
H2Elec-saltcavern-FC
kW
kWh
LIB
NG
NREL
PV
RE
SFS
VRE
ACRONYMS
—batteryenergystoragesystem(s)
—U.S.DepartmentofEnergy
—distributedresource
—fuelcell
—gigawatts
—gigawatt-hour
—hydrogen(asastoragefluid)
—hydrogenstorageusingelectrolyzers,saltcaverns,andcombustionturbines
—hydrogenstorageusingelectrolyzers,saltcaverns,andstationaryfuelcells
—kilowatt
—kilowatt-hour(eitheraunitofenergyoraunitofstoragecapacity)
—lithium-ionbattery
—naturalgas
—NationalRenewableEnergyLaboratory
—photovoltaics
—renewableenergy
—StorageFuturesStudy
—variablerenewableenergy
StorageFuturesStudy:KeyLearningsfortheComingDecades|vii
TABLEOFCONTENTS
TheComingDecadesofEnergyStorageDeployment 1
KEYLEARNING1:StorageIsPoisedforRapidGrowth 3
KEYLEARNING2:RecentStorageCostReductionsAreProjectedToContinue,withLithium-IonBattery
ContinuingToLeadinMarketShareforSomeTime 4
KEYLEARNING3:TheAbilityofStorageToProvideFirmCapacityIsaPrimaryDriver
forCost-CompetitiveDeployment 7
KEYLEARNING4:StorageIsNottheOnlyFlexibilityOption,butItsDecliningCostsHaveChanged
WhenItIsDeployedVersusOtherOptions 8
KEYLEARNING5:StorageandPVComplementEachOther 10
KEYLEARNING6:CostReductionsandtheValueofBackupPowerIncreasetheAdoptionof
Building-levelStorage 12
KEYLEARNING7:StorageDurationsWillLikelyIncreaseasDeploymentsIncrease 13
KEYLEARNING8:SeasonalStorageTechnologiesBecomeEspeciallyImportantfor100%
CleanEnergySystems 14
ConclusionsandRemainingUncertainties 16
References 18
viii|StorageFuturesStudy:KeyLearningsfortheComingDecades
LISTOFFIGURES
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,
deployingarangeofdurations(left)
3
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeand
areexpectedtocontinuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectric
vehicledemand
4
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions 5
Figure4.Capitalcostforenergy($/kWh)versuscapitalcostforcapacity($/kW)
forvarioustechnologies
6
Figure5.Restrictingservicesthatstoragecanprovideshowscapacityservicesaremoreimportant
thantime-shiftingoroperatingreservestoachievestorage’smaximumpotential 7
Figure6.Theflexibilitysupplycurve
8
Figure7.Increasingloadflexibilityandresponsivedemandreducestheneedforstorage
capacityin2050forthelowREcostandlowRE/batterycostscenarioswithandwithout
highdemandresponsecontribution
9
Figure8.IncreaseddeploymentofPVdemonstratesthereduceddurationofnetloadpeaks 10
Figure9.IncreaseddeploymentofPVdemonstratesthereduceddurationrequiredfor
energystoragetoprovidefirmcapacity
10
Figure10.Nationalpeakingcapacitypotentialfordiurnalstorage(upto12hours)asafunction
ofPVcontribution(left)andnationaldiurnalenergytime-shiftingpotentialasafunction
ofPVcontribution(right)
11
Figure11.Storagecapacityasafunctionofrenewableenergycontribution(%) 11
Figure12.Projectedadoptionofdistributedstorage(GWof2-hourdurationstoragesystemscoupledwith
PV)increasesovertimeascostsdecrease,withasignificantjumpiftherearebreakthroughPVcosts 12
Figure13.Asstoragedeploymentincreases,thenetloadpeakwidens,requiringlonger-duration
storagetoprovidefirmcapacity
13
Figure14.Theaveragedurationofnewstoragedeploymentsincreasesasthetotalamountof
storagecapacitygrows,uptoapproximately200GW(usingreferencestoragecosts) 13
Figure15.Seasonalmismatchofrenewableenergysupplyandelectricitydemand
demonstratesthepotentialopportunityforseasonalstorage
14
Figure16.Capacityandgenerationin2050forthescenariosthatreachthe100%requirement 15
LISTOFTABLES
Table1.StorageFutureStudySeriesReports
v
Table2.TechnicalReviewCommitteeMembers
vi
StorageFuturesStudy:KeyLearningsfortheComingDecades|ix
THECOMINGDECADESOFENERGYSTORAGEDEPLOYMENT
Energystorageisverylikelytobecomeacriticalelementofalow-carbon,flexible,resilientfutureelectricgrid.
Inthepastseveralyears,therehasbeenadramaticincreaseofvariablerenewablegenerationintheU.S.powersector,andsignificantgrowthisanticipatedinthefuture.Inaddition,therehasbeenincreasedfocusintheUnitedStatesandgloballyonaddressingnumerousinstancesofpowersystemdisruptionsandincreasedfocusonresearchandanalysisonpowersystemreliabilityandresiliencywithincreasingamountsofvariablerenewablepower—emphasizingtheimportanceofcleanenergydeploymentwhilemaintainingareliablepowersystem.
Atthesametime,therehavebeensignificantcostdeclinesinenergystoragetechnologies(particularlybatteries)overthepastfewyears,andmanymorestoragetechnologiesareunderdevelopment.Theseconvergingfactorshaveincreasedattentiononthepotentialroleofenergystorageasacriticalassetfordecarbonizationandtoensurereliableelectricityfortheevolvinggrid.
Energystorageoffersmanypotentialbenefitstothegrid.ItcouldprovidegenerationtocomplementthedeploymentofwindandsolarPV,providingcapacitywhentheseresourceshavereducedavailability.Whenusedinconjunctionwithrenewableenergy(RE)orothercleanenergyresources,energystoragehastheabilitytoreducegreenhousegasemissions.
Energystoragecanalsoincreaseutilizationofnewandexistingtransmissionlines,whileoffsettingtheneedtobuildnewpowerplantstoprovidepeakingcapacityoroperatingreserves.Finally,distributedenergystoragecanreducestressonthedistributiongridduringpeakdemandtimes.Thisflexibilitywillbeimportantwiththeanticipatedproliferationofelectricvehiclesandpotentialincreasedloadfromotherend-useelectrification.
Asthecostofenergystoragetechnologiescontinuestodeclineandthegridintegratesmorevariablerenewablegeneration,ourmodelingindicatessignificantincreaseddeploymentofenergystoragedeploymentintheelectricsysteminthecomingdecades.Questionsarise,suchashowcouldthisimpacthowthegridoperatesandevolvesoverthecomingdecades?
Becauseenergystoragecanimpactfeaturesofelectricitygeneration,transmission,anddistribution,quantifyingthevalueofstorageismorecomplicatedthanquantifyingthevalueofotherassetslikesolarPVorwindenergythatarepurelygeneration.ThroughtheStorageFuturesStudy(SFS),theNationalRenewableEnergyLaboratory(NREL)hasaimedtoincreaseunderstandingofhowstorageaddsvalue,andhowmuch,tothepowersystem,howmuchstoragecouldbeeconomicallydeployed,andhowthatdeploymentmightimpactpowersystemevolutionandoperations.
TheStorageFuturesStudystartedwithdefining
aframeworkoffourphasesofincreasingenergy
storagedeploymentanddurationovertime,moved
1|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|2
ontocreateasetoflong-termprojectionsfordiurnal(<12hours)storagedeploymentintheUnitedStates,andthenapplieddetailedproductioncostandagent-basedmodelingtobetterunderstandtheroleofstorage.Thekeyconclusionoftheresearchisthatdeploymentofenergystoragehasthepotentialtoincreasesignificantly—reachingatleastfivetimestoday’scapacityby2050—anditwillplayanintegral
roleindeterminingthecost-optimalgridmixofthefuture.DrawingontheanalysisacrosstheSFS,previouswork,andadditionalanalysisforthisreport,thestudyidentifiedeightspecifickeylearningsaboutthefutureofenergystorageanditsimpactonthepowersystem.Thesekeylearningscanhelppolicymakers,technologydevelopers,andgridoperatorsprepareforthecomingwaveofstoragedeployment:
KEYLEARNING1:
Storageispoisedforrapidgrowth.
KEYLEARNING2:
Recentstoragecostreductionsareprojectedtocontinue,withlithium-ionbatteries(LIBs)continuingtoleadinmarketshareforsometime.
KEYLEARNING3:
Theabilityofstoragetoprovidefirmcapacityisaprimarydriverofcost-competitivedeployment.
KEYLEARNING4:
Storageisnottheonlyflexibilityoption,butitsdecliningcostshavechangedwhenitisdeployedversusotheroptions.
KEYLEARNING5:
Storageandphotovoltaics(PV)complementeachother.
KEYLEARNING6:
Costreductionsandthevalueofbackuppowerincreasetheadoptionofbuilding-levelstorage.OPTIONOFBUILDING-LEVELSTORAGE.
KEYLEARNING7:
Storagedurationswilllikelyincreaseasdeploymentsincrease.
KEYLEARNING8:
Seasonalstoragetechnologiesbecomeespeciallyimportantfor100%cleanenergysystems.
Eachofthefollowingsectionsprovidesadditionalinsightsintotheeightkeylearnings,andweconcludewithremaininguncertaintiesthatcouldbeexploredtofurtheradvanceunderstandingoftheroleofstorageintheevolvingU.S.powergrid.
KEYLEARNING1
StorageIsPoisedforRapidGrowth
TheSFSreportEconomicPotentialofDiurnalStorageintheU.S.PowerSector(Frazieretal.2021)demonstratesthegrowingcost-competitivenessofenergystorage.Usingastate-of-the-artnational-scalecapacityexpansionmodel,wefindthatdiurnalstorage(<12hoursofduration)iseconomicallycompetitiveacrossavarietyofscenarioswitharangeofcostandperformanceassumptionsforstorage,wind,solarPV,andnaturalgas(NG).
Figure1illustratesthatacrossallscenarios,deploymentsofnewstoragerangesfrom100to650gigawatts(GW)ofnewcapacity.
Thislargerangeisdrivenbyavarietyoffactors,includingstoragecosts(KeyLearning2),naturalgasprices,andrenewableenergycostadvancement,buteventhemostconservativecaserepresentsafivefoldincreasecomparedtotheinstalledstoragecapacityof23GWin2020(themajorityofwhichispumpedstoragehydropower).
Itisimportanttonotethatsignificantdeploymentsofbothrenewableenergyandstoragearedeployedevenwithoutadditionalcarbonpolicies,demonstratingtheirincreasingcost-competitivenessasresourcesforprovisionofenergyandcapacityservices.
Modeledscenariosresultinsignificant,butnotcomplete,decarbonization,wherepowersectoremissionsarereducedby46%–82%comparedto2005,andvariablerenewableenergy(VRE)reachessharesof43%–81%nationallyby2050.Durationswith4–6hoursarethemostcommon,drivenbytheinherentsynergywithPV(KeyLearning5),butlongerdurationsareoftendeployedinthelatermodeledyears(KeyLearning7).TheprimarydriversbehindstoragegrowthandtheevolutionofstoragedevelopmentwereexploredinFrazieretal.(2021)andotherSFSreports—ashighlightedinthefollowingkeylearnings.
Figure1.Nationalstoragecapacityinthereferencecasegrowstoabout200GWby2050,deployingarangeofdurations(left)Thistranslatestoabout1,200gigawatt-hours(GWh)ofstoredenergy(right),withawiderangeofdeployments.
3|StorageFuturesStudy:KeyLearningsfortheComingDecades
StorageFuturesStudy:KeyLearningsfortheComingDecades|4
KEYLEARNING2
RecentStorageCostReductionsAreProjectedToContinue,with
Lithium-IonBatteryContinuingToLeadinMarketShareforSomeTime
TheSFSreportEnergyStorageTechnologyModelingInputDataReportdiscussesthefuturecostprojectionsforutility-scalebatteryenergystoragesystemsandothertechnologiesthatdrivemuchoftheanticipatedgrowthidentifiedinKeyLearning1.
Mostofthestationarystoragedeploymentsthatwilloccurintheneartermareexpectedtobeintheformofbatteries,particularlyLIBs.ThedominanceofLIBs,atleast
inthenearterm,hasbeendrivenbygrowthofthistechnologyacrossmultiplemarkets,includingconsumerelectronics,stationaryapplications,andespeciallyelectricvehicles.
Figure2providesanexampleofhistoricalandprojectedfuturecostsoflithium-ionbatterypacks,illustratingarapiddeclineinrecentyears.Thechartalsoshowsthevastmajorityofbatterydeploymentsarefortransportationapplications,whichwill
likelybethemostimportantdriversofbatterytechnologydevelopmentandbatterycostdeclinesingeneral.
Weusedavarietyoffuturecostprojectionsforutility-scalestationarybatteryenergystoragesystems(BESS)toevaluatetotalsystemcost,includinginverter,balanceofsystem,andinstallation.Anexampleofacostprojectionforbatterieswith2–10hoursofusabledurationthatisusedintheSFSreferencescenarioisshowninFigure3.
Figure2.Lithium-ionbatterypackcostshavedroppedbymorethan80%overthepastdecadeandareexpectedto
continuetofallbasedoncontinuedscaleofproduction,drivenlargelybyelectricvehicledemand.
2021valuesfromBloombergNEF3are$132/kW.DataSource:FrithandGoldie-Scot2019
3“BatteryPackPricesFalltoanAverageof$132/kWh,ButRisingCommodityPricesStarttoBite,”BloombergNEF,November30,2021,
/blog/
battery-pack-prices-fall-to-an-average-of-132-kwh-but-rising-commodity-prices-start-to-bite/
.
Figure3.Theutility-scaleBESSReferenceScenarioprojectscontinuedcostreductions.Theleftpanelmeasurescostona$/kWh(usableenergy)basis,whiletherightpanelmeasurescostsbasedon$/kW(maximumdirectcurrent[DC]outputpower).Projectionsassumea60-megawattDCproject.
Theleftcurveshowsthetotalcostperinstalledkilowatt-hour(kWh)ofusablecapacity,whichisacommonmeasureusedinthebatteryindustry.Thisisthetotalcostofinstallation,whichforstationaryapplicationsincludesboththepower-relatedcosts(associatedwiththeequipmentthatconvertsgridelectricityintostoredelectricityandbackagain)andtheenergy-relatedcosts(thestoragemedium).Thepower-relatedcoststypicallydonotscalewithduration,meaningtheyarethesamefora2-hoursystemanda10-hoursystem,whichiswhythecostsperkWhdecreaseasdurationincreases(powercostsaredividedoveralargernumberofkWh).(ThisbreakdownofcostsforpoweranddurationisillustratedinFigure4.)Therightcurveshowsthecostperkilowatt(kW),whichisamoreconventionalmeasureofpowerplantcostsusedintheutilityindustry.Bythismeasure,costsin
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 硬幣分揀機(jī)課程設(shè)計(jì)
- 2025年度智能電網(wǎng)建設(shè)入股合作協(xié)議4篇
- 羊駝創(chuàng)意美術(shù)課程設(shè)計(jì)
- 2024版聘用總經(jīng)理合同范本
- 2025年度深海油氣田鉆井作業(yè)合同4篇
- 2025年度裝配式建筑施工合同范本4篇
- 二零二五年度某工程有限責(zé)任公司爐渣資源化利用項(xiàng)目合作協(xié)議4篇
- 二零二五版板車(chē)租賃與物流配送標(biāo)準(zhǔn)化合同3篇
- 魔獸爭(zhēng)霸課程設(shè)計(jì)
- 二零二五年度高檔鋁制門(mén)窗設(shè)計(jì)生產(chǎn)安裝一體化合同4篇
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 有機(jī)化學(xué)機(jī)理題(福山)
- 醫(yī)學(xué)會(huì)自律規(guī)范
- 商務(wù)溝通第二版第4章書(shū)面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線(xiàn)套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動(dòng)物遺傳育種學(xué)》動(dòng)物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報(bào)告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
- 7.6用銳角三角函數(shù)解決問(wèn)題 (2)
評(píng)論
0/150
提交評(píng)論