八年級下冊數(shù)學(xué)知識點(15篇)_第1頁
八年級下冊數(shù)學(xué)知識點(15篇)_第2頁
八年級下冊數(shù)學(xué)知識點(15篇)_第3頁
八年級下冊數(shù)學(xué)知識點(15篇)_第4頁
八年級下冊數(shù)學(xué)知識點(15篇)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第八年級下冊數(shù)學(xué)知識點(15篇)八年級下冊數(shù)學(xué)知識點1

一.選擇題:(每題5分)

1.下列關(guān)于x的方程中,是分式方程的是()

A.3x=12B.1x=2C.x+25=3+x4D.3x-2y=1

2.下列各式計算正確的是()

A.B.C.D.

3.下列各式正確的是()

A.B.C.D.

4.解方程去分母得()

A.B.

C.D.

5.化簡的結(jié)果是()

A.B.C.D.

6.若分式的值為0,則()A.B.C.D.

7.若,則的值是()A.B.C.D.

二.填空題:(每題5分)

9.在下列三個不為零的式子中,任選兩個你喜歡的式子組成一個分式是,把這個分式化簡所得的結(jié)果是.

10.某種感冒病毒的直徑是0.00000034米,用科學(xué)記數(shù)法表示為__________________米;

11.計算的結(jié)果是_________.

12.若關(guān)于x的分式方程在實數(shù)范圍內(nèi)無解,則實數(shù)a=________.

13.已知,則.

三.解答題:(每題7分)

14.化簡:

15.計算:

18.請先將下式化簡,再選擇一個你喜歡又使原式有意義的數(shù)代入求值.

八年級下冊數(shù)學(xué)知識點2

一、分解因式

1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

2、因式分解與整式乘法是互逆關(guān)系。

因式分解與整式乘法的區(qū)別和聯(lián)系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘。

二、提公共因式法

1、如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。這種分解因式的方法叫做提公因式法。

如:

2、概念內(nèi)涵:

(1)因式分解的最后結(jié)果應(yīng)當(dāng)是"積";

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據(jù)是乘法對加法的分配律,即:

3、易錯點點評:

(1)注意項的符號與冪指數(shù)是否搞錯;

(2)公因式是否提"干凈";

(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉。

數(shù)學(xué)一元一次方程解法的一般步驟

使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

一般解法:

(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);

(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)

(3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號

(4)合并同類項:把方程化成ax=b(a≠0)的形式;

(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.

數(shù)學(xué)函數(shù)的概念知識點

1.常量與變量:在某一變化過程中,可以取不同數(shù)值的量叫做變量;在某一變化過程中保持數(shù)值不變的量叫做常量.

2.函數(shù):在某一變化過程中的兩個變量x和y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一確定的值和它對應(yīng),那么y就叫做x的函數(shù),其中x做自變量,y是因變量.

(1)自變量取值范圍的確定

①整式函數(shù)自變量的取值范圍是全體實數(shù).

②分式函數(shù)自變量的取值范圍是使分母不為0的實數(shù).

③二次根式函數(shù)自變量的取值范嗣是使被開方數(shù)是非負數(shù)的實數(shù),若涉及實際問題的函數(shù),除滿足上述要求外還要使實際問題有意義.

八年級下冊數(shù)學(xué)知識點3

相似概念

相似,指相類、相像的意思。語出《易·系辭上》:“與天地相似,故不違?!睂W(xué)科上解釋為如果兩個圖形形狀相同,但大小不一定相等,那么這兩個圖形相似。

相似三角形概念

三角分別相等,三邊成比例的兩個三角形叫做相似三角形。相似三角形是幾何中重要的證明模型之一,是全等三角形的推廣。全等三角形可以被理解為相似比為1的相似三角形。相似三角形其實是一套定理的集合,它主要描述了在相似三角形是幾何中兩個三角形中,邊、角的關(guān)系。

判定定理

1。平行于三角形一邊的直線和其他兩邊所構(gòu)成的三角形與原三角形相似。

2。如果兩個三角形對應(yīng)邊的比相等且夾角相等,這2個三角形也可以說明相似(簡敘為:兩邊對應(yīng)成比例且夾角相等,兩個三角形相似。)。

3。如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似(簡敘為:三邊對應(yīng)成比例,兩個三角形相似。)。

4。如果兩個三角形的兩個角分別對應(yīng)相等(或三個角分別對應(yīng)相等),則有兩個三角形相似(簡敘為兩角對應(yīng)相等,兩個三角形相似)。

數(shù)學(xué)有理數(shù)的加法法則

⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加。

⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。

⑶一個數(shù)同0相加,仍得這個數(shù)。

兩個數(shù)相加,交換加數(shù)的位置,和不變。

加法交換律:a+b=b+a

三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

加法結(jié)合律:(a+b)+c=a+(b+c)

數(shù)學(xué)圓的對稱性知識點

1、圓的軸對稱性

圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

2、圓的中心對稱性

圓是以圓心為對稱中心的中心對稱圖形。

(2)基本函數(shù)的概念及性質(zhì)

八年級下冊數(shù)學(xué)知識點4

1、分式:

(1)分式的定義:如果A、B表示兩個整式,并且B中含有字母,那么式子A/B叫做分式。

(2)分式是否有意義的條件:分式的分母是否等于0,有意義則分母不為0,無意義則分母為0。

(3)分式值為零的條件:分式A/B=0的條件是A=0,且B≠0。

注意:求出使分子為0的字母的值,一定要注意檢驗這個字母的值是否使分母的值為0,一般當(dāng)分母的值不為0時,就是所要求的字母的值。

(4)分式的基本性質(zhì):分式的分子與分母同乘(或除以)一個不等于0的整式,分式的值不變。

(5)分式的通分:利用分式的基本性質(zhì),使分子和分母同乘適當(dāng)?shù)恼剑桓淖兎质降闹担褞讉€異分母分式化成相同分母的分式,這樣的分式變形叫做分式的通分。

注意:通分的關(guān)鍵是確定幾個式子的最簡公分母。幾個分式通分時,通常取各分母所有因式的最高次冪的積作為公分母,這樣的分母就叫做最簡公分母。求最簡公分母時應(yīng)注意以下幾點:

●“各分母所有因式的最高次冪”是指凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪選取指數(shù)最大的;

●如果各分母的系數(shù)都是整數(shù)時,取它們系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù);

●如果分母是多項式,一般應(yīng)先分解因式。

(6)分式的約分:根據(jù)分式的基本性質(zhì),約去分式的分子和分母中的公因式,不改變分式的值,這樣的分式變形叫做分式的約分。

約分后分式的分子、分母中不再含有公因式,這樣的分式叫最簡公因式。

注意:約分的關(guān)鍵是找出分式中分子和分母的公因式

◆(1)約分時注意分式的分子、分母都是乘積形式才能進行約分;分子、分母是多項式時,通常將分子、分母分解因式,然后再約分;

◆(2)找公因式的方法:

①當(dāng)分子、分母都是單項式時,先找分子、分母系數(shù)的最大公約數(shù),再找相同字母的最低次冪,它們的積就是公因式;

②當(dāng)分子、分母都是多項式時,先把多項式因式分解。

2、分式方程

(1)分式方程的概念

◆a、分式方程的重要特征:

①是等式;

②方程里含有分母;

③分母中含有未知數(shù).

◆b、分式方程和整式方程的區(qū)別:在于分母中是否有未知數(shù)。

(2)分式方程的解法

解分式方程的一般步驟:

a、方程兩邊都乘以最簡公分母,去掉分母,化成整式方程(注意:當(dāng)分母是多項式時,先分解因式,再找出最簡公分母);

b、解整式方程,求出整式方程的解;

c、檢驗:將求得的解代入最簡公分母,若最簡公分母不等于0,則這個解是原分式方程的解,若最簡公分母等于0,則這個解不是原分式方程的解,原分式方程無解。

注意:解分式方程一定要檢驗根,這種檢驗與整式方程不同,不是檢查解方程過程中是否有錯誤,而是檢驗是否出現(xiàn)增根,它是在解方程的過程中沒有錯誤的前提下進行的。

運算知識點

分式的四則運算

◆乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。

◆除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

◆乘方法則:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整數(shù))

◆加減法則:同分母的分式相加減,分母不變,把分子相加減;異分母的分式相加減,先通分,轉(zhuǎn)化為同分母分式,然后再加減。

注意

(1)異分母分式相加減,“先通分”是關(guān)鍵,最簡公分母確定后再通分,計算時要注意分式中符號的處理,特別是分子相減,要注意分子的整體性;

(2)運算時順序合理、步驟清晰;

(3)運算結(jié)果必須化成最簡分式或整式。

數(shù)學(xué)有理數(shù)比大小知識點

(1)正數(shù)永遠比0大,負數(shù)永遠比0小;

(2)正數(shù)大于一切負數(shù);

(3)兩個負數(shù)比較,絕對值大的反而小;

(4)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

(5)-1,-2,+1,+4,-0.5,以上數(shù)據(jù)表示與標準質(zhì)量的差,絕對值越小,越接近標準。

數(shù)學(xué)線段的性質(zhì)

(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。

(2)連接兩點的線段的長度,叫做這兩點的距離。

(3)線段的中點到兩端點的距離相等。

(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

八年級下冊數(shù)學(xué)知識點5

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

八年級下冊數(shù)學(xué)知識點6

二次根式

1.一般地,形如√a的代數(shù)式叫做二次根式,其中,a叫做被開方數(shù)。當(dāng)a≥0時,√a表示a的算術(shù)平方根;當(dāng)a小于0時,√a的值為純虛數(shù)。

2.二次根式的加減法

(1)同類二次根式:一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。

(2)合并同類二次根式:把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。

(3)二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并。

3.二次根式的乘除法

二次根式相乘除,把被開方數(shù)相乘除,根指數(shù)不變,再把結(jié)果化為最簡二次根式。

20某某中考八年級數(shù)學(xué)學(xué)習(xí)方法

養(yǎng)成良好的課前和課后學(xué)習(xí)習(xí)慣:在當(dāng)前高中數(shù)學(xué)學(xué)習(xí)中,培養(yǎng)正確的學(xué)習(xí)習(xí)慣是一項重要的學(xué)習(xí)技能。雖然有一種刻板印象的猜疑,但在高中數(shù)學(xué)學(xué)習(xí)真的是反復(fù)嘗試和錯誤的。學(xué)生們不得不預(yù)習(xí)課本。我準備的數(shù)學(xué)教科書不是簡單的閱讀,而是一個例子,至少十分鐘的思考。在使用前不能通過學(xué)習(xí)知識解決問題的情況下,可以在教學(xué)內(nèi)容中找到答案,然后在教材中考察問題的解決過程,掌握解決問題的思路。同時,在課堂上安排筆記也是必要的。在高中數(shù)學(xué)研究中,建議采用兩種形式的筆記,一種是課堂速記,另一種是課后筆記。這不僅提高了課堂記憶的吸收能力,而且有助于對筆記內(nèi)容的查詢。

20某某中考八年級數(shù)學(xué)學(xué)習(xí)技巧

1.先看筆記后做作業(yè)。

有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達到教師要求的水平。

因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時,老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個實施,在很長一段時間內(nèi),會造成很大的損失。

2.做題之后加強反思。

學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的'題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個問題,并總結(jié)我們自己的收獲。

要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說:有錢難買回頭看。做完作業(yè),回頭細看,價值極大。這一回顧,是學(xué)習(xí)過程中一個非常重要的環(huán)節(jié)。

八年級下冊數(shù)學(xué)知識點7

《反比例函數(shù)》知識點整理

1、定義:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。

2、其他形式xy=k(k為常數(shù),k≠0)都是。

3、圖像:反比例函數(shù)的圖像屬于雙曲線。

反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。

有兩條對稱軸:直線y=x和y=—x。對稱中心是:原點。

4、性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小。

當(dāng)k

5、|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸

所作的垂線段與兩坐標軸圍成的矩形的面積。

勾股定理

1、勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。

2、勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。

3、經(jīng)過證明被確認正確的命題叫做定理。

我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

四邊形

平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

平行四邊形的性質(zhì):平行四邊形的對邊相等;

平行四邊形的對角相等。

平行四邊形的對角線互相平分。

平行四邊形的判定

1、兩組對邊分別相等的四邊形是平行四邊形

2、對角線互相平分的四邊形是平行四邊形;

3、兩組對角分別相等的四邊形是平行四邊形;

4、一組對邊平行且相等的四邊形是平行四邊形。

三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

直角三角形斜邊上的中線等于斜邊的一半。

矩形的定義:有一個角是直角的平行四邊形。

矩形的性質(zhì):矩形的四個角都是直角;

矩形的對角線平分且相等。AC=BD

矩形判定定理:

1、有一個角是直角的平行四邊形叫做矩形。

2、對角線相等的平行四邊形是矩形。

3、有三個角是直角的四邊形是矩形。

菱形的定義:鄰邊相等的平行四邊形。

菱形的性質(zhì):菱形的四條邊都相等;

菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

菱形的判定定理:

1、一組鄰邊相等的平行四邊形是菱形。

2、對角線互相垂直的平行四邊形是菱形。

3、四條邊相等的四邊形是菱形。

S菱形=1/2某ab(a、b為兩條對角線)

正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:1、鄰邊相等的矩形是正方形。2、有一個角是直角的菱形是正方形。

梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

直角梯形的定義:有一個角是直角的梯形

等腰梯形的定義:兩腰相等的梯形。

等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等。

等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

解梯形問題常用的輔助線:如圖

線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交于疑點,這一點就是三角形的重心。寬和長的比是(約為0.618)的矩形叫做黃金矩形。

數(shù)據(jù)的分析

1、算術(shù)平均數(shù):

2、加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。

權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。

而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權(quán)平均數(shù)的方法。

3、將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

4、一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

5、一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

6、方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

數(shù)據(jù)的收集與整理的步驟:1、收集數(shù)據(jù)2、整理數(shù)據(jù)3、描述數(shù)據(jù)4、分析數(shù)據(jù)5、撰寫調(diào)查報告6、交流

7、平均數(shù)受極端值的影響眾數(shù)不受極端值的影響,這是一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

數(shù)學(xué)學(xué)習(xí)中常見問題分析

大部分初二學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先初二新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的初二學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說初二學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。

還有的初二學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些初二學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致初二學(xué)生學(xué)不好數(shù)學(xué)的原因。

數(shù)學(xué)學(xué)習(xí)技巧

1、做好預(yù)習(xí):

單元預(yù)習(xí)時粗讀,了解近階段的學(xué)習(xí)內(nèi)容,課時預(yù)習(xí)時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應(yīng)包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯(lián)想、類比和歸納,二是要敢于質(zhì)疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習(xí)是最及時最直接的反饋,一定不能錯過。不要急于完成作業(yè),要先看看你的筆記本,回顧學(xué)習(xí)內(nèi)容,加深理解,強化記憶。

4、及時糾錯:

課堂練習(xí)、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關(guān)計算的訓(xùn)練。不明白的問題要及時向同學(xué)和老師請教了,不能將問題處于懸而未解的狀態(tài),養(yǎng)成今日事今日畢的好習(xí)慣。

八年級下冊數(shù)學(xué)知識點8

一.不等關(guān)系

※1.一般地,用符號(或),(或)連接的式子叫做不等式.

※2.準確翻譯不等式,正確理解非負數(shù)、不小于等數(shù)學(xué)術(shù)語.

非負數(shù):大于等于0(0)、0和正數(shù)、不小于0

非正數(shù):小于等于0(0)、0和負數(shù)、不大于0

二.不等式的基本性質(zhì)

※1.掌握不等式的基本性質(zhì),并會靈活運用:

(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,

即:如果ab,那么a+cb+c,a-cb-c.

(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,

即如果ab,并且c0,那么acbc,.

(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,

即:如果ab,并且c0,那么ac

※2.比較大?。?a、b分別表示兩個實數(shù)或整式)

一般地:

如果ab,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a

如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;

如果a

即:

ab,則a-b0

a=b,則a-b=0

a

(由此可見,要比較兩個實數(shù)的大小,只要考察它們的差就可以了.

三.不等式的解集:

※1.能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.

※2.不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù).

※3.不等式的解集在數(shù)軸上的表示:

用數(shù)軸表示不等式的解集時,要確定邊界和方向:

①定點:有等號的是實心圓點,無等號的是空心圓圈;

②方向:大向右,小向左

四.一元一次不等式:

※1.只含有一個未知數(shù),且含未知數(shù)的式子是整式,未知數(shù)的次數(shù)是1.像這樣的不等式叫做一元一次不等式.

※2.解一元一次不等式的過程與解一元一次方程類似,特別要注意,當(dāng)不等式兩邊都乘以一個負數(shù)時,不等號要改變方向.

※3.解一元一次不等式的步驟:

①去分母;

②去括號;

③移項;

④合并同類項;

⑤系數(shù)化為1(注意不等號方向改變的問題)

※4.不等式應(yīng)用的探索(利用不等式解決實際問題)

列不等式解應(yīng)用題基本步驟與列方程解應(yīng)用題相類似,即:

①審:認真審題,找出題中的不等關(guān)系,要抓住題中的關(guān)鍵字眼,如大于、小于、不大于、不小于等含義;

②設(shè):設(shè)出適當(dāng)?shù)奈粗獢?shù);

③列:根據(jù)題中的不等關(guān)系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:寫出答案,并檢驗答案是否符合題意.

五.一元一次不等式與一次函數(shù)

六.一元一次不等式組

※1.定義:由含有一個相同未知數(shù)的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.

※2.一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.

如果這些不等式的解集無公共部分,就說這個不等式組無解.

幾個不等式解集的公共部分,通常是利用數(shù)軸來確定.

※3.解一元一次不等式組的步驟:

(1)分別求出不等式組中各個不等式的解集;

(2)利用數(shù)軸求出這些解集的公共部分,

(3)寫出這個不等式組的解集.

兩個一元一次不等式組的解集的四種情況(a、b為實數(shù),且a

(同大取大;同小取小;大小小大中間找;大大小小無解)

第二章分解因式

一.分解因式

※1.把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

※2.因式分解與整式乘法是互逆關(guān)系.

因式分解與整式乘法的區(qū)別和聯(lián)系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘.

二.提公共因式法

※1.如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

※2.概念內(nèi)涵:

(1)因式分解的最后結(jié)果應(yīng)當(dāng)是積

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據(jù)是乘法對加法的分配律,ab+ac=a(b+c)

(1)注意項的符號與冪指數(shù)是否搞錯;

(2)公因式是否提徹底;

(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.

三.運用公式法

※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2.主要公式:

(1)平方差公式:

①應(yīng)是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應(yīng)是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數(shù)乘積的2倍.

※5.因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)因式分解的最后結(jié)果必須是幾個整式的乘積;

(4)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

第三章分式

一.分式

※1.兩個整數(shù)不能整除時,出現(xiàn)了分數(shù);類似地,當(dāng)兩個整式不能整除時,就出現(xiàn)了分式.

整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么稱為分式,對于任意一個分式,分母都不能為零.

※2.進行分數(shù)的化簡與運算時,常要進行約分和通分,其主要依據(jù)是分數(shù)的基本性質(zhì):

分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變.

※3.一個分式的分子、分母有公因式時,可以運用分式的基本性質(zhì),把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.

※4.分子與分母沒有公因式的分式,叫做最簡分式.

二.分式的乘除法法則

兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘(簡記為:除以一個數(shù)等于乘以這個數(shù)的倒數(shù))

三.分式的加減法

※1.分式與分數(shù)類似,也可以通分.

根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

※2.分式的加減法:

分式的加減法與分數(shù)的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.

(1)同分母的分式相加減,分母不變,把分子相加減;

(2)異號分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p;

※3.概念內(nèi)涵:

通分的關(guān)鍵是確定最簡分母,其方法如下:

(1)最簡公分母的系數(shù),取各分母系數(shù)的最小公倍數(shù);

(2)最簡公分母的字母,取各分母所有字母的最高次冪的積,

(3)如果分母是多項式,則首先對多項式進行因式分解.

四.分式方程

※1.解分式方程的一般步驟:

①在方程的兩邊都乘以最簡公分母,約去分母,化成整式方程;

②解這個整式方程;

③把整式方程的根代入原方程檢驗.

※2.列分式方程解應(yīng)用題的一般步驟:

①審清題意;

②設(shè)未知數(shù);

③根據(jù)題意找相等關(guān)系,列出(分式)方程;

④解方程,并驗根;

⑤寫出答案.

八年級下冊數(shù)學(xué)知識點9

1.旋轉(zhuǎn)和平移

平移和旋轉(zhuǎn)是幾何中全等變換的一種重要的方式,其中旋轉(zhuǎn)是對大家?guī)缀巫兓芰M行考察的常用手段。

旋轉(zhuǎn)問題之所以難,就是因為他通過旋轉(zhuǎn)使得圖形中出現(xiàn)很多相等的邊和相等的角,但是這不是圖中直接告訴的,是需要大家自己發(fā)現(xiàn)的,而旋轉(zhuǎn)與后面的二次函數(shù)、反比例函數(shù)、四邊形等知識結(jié)合在一起,會使的題目靈活性非常強,所以這一塊在學(xué)基礎(chǔ)知識的時候一定要牢固把握。

2.平行四邊形

平行四邊形,是學(xué)習(xí)矩形、菱形、正方形的基礎(chǔ),他的判定方式有五種,在實際應(yīng)用的時候,同學(xué)們往往難以決定到底要采取哪種方式,這就需要同學(xué)們根據(jù)圖形靈活的選擇,不同的辦法進行解決。

3.特殊平行四邊形行

特殊平行四邊形是初三的內(nèi)容,但是很多地方都把它提到初二來講。這部分知識靈活性強,變化大,綜合難度高,往往是同學(xué)們覺得幾何難學(xué)的開端。解決的辦法就是把他們的性質(zhì)和判定列表寫出來,由于表述非常的類似和接近,記憶起來比較困難。這就需要同學(xué)們運用對比分析的方法,搞清楚這三種圖形各自的性質(zhì)和判定,這樣才能在應(yīng)用的時候不至于混淆。

八年級下冊數(shù)學(xué)知識點10

分解因式

一、分解因式

※1.把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

※2.因式分解與整式乘法是互逆關(guān)系.

因式分解與整式乘法的區(qū)別和聯(lián)系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘.

二、提公共因式法

※1、如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2、概念內(nèi)涵:

(1)因式分解的最后結(jié)果應(yīng)當(dāng)是"積";

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據(jù)是乘法對加法的分配律,即:

※3、易錯點點評:

(1)注意項的符號與冪指數(shù)是否搞錯;

(2)公因式是否提"干凈";

(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉.

三、運用公式法

※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3.易錯點點評:

因式分解要分解到底.如就沒有分解到底.

※4、運用公式法:

(1)平方差公式:

①應(yīng)是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應(yīng)是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數(shù)乘積的2倍.

※5、因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

四、分組分解法:

※1、分組分解法:利用分組來分解因式的方法叫做分組分解法.

如:

※2、概念內(nèi)涵:

分組分解法的關(guān)鍵是如何分組,要嘗試通過分組后是否有公因式可提,并且可繼續(xù)分解,分組后是否可利用公式法繼續(xù)分解因式.

※3、注意:分組時要注意符號的變化.

五、十字相乘法:

※1、對于二次三項式,將a和c分別分解成兩個因數(shù)的乘積,,,且滿足,往往寫成的形式,將二次三項式進行分解.

如:

※2、二次三項式的分解:

※3、規(guī)律內(nèi)涵:

(1)理解:把分解因式時,如果常數(shù)項q是正數(shù),那么把它分解成兩個同號因數(shù),它們的符號與一次項系數(shù)p的符號相同.

(2)如果常數(shù)項q是負數(shù),那么把它分解成兩個異號因數(shù),其中絕對值較大的因數(shù)與一次項系數(shù)p的符號相同,對于分解的兩個因數(shù),還要看它們的和是不是等于一次項系數(shù)p.

※4、易錯點點評:

(1)十字相乘法在對系數(shù)分解時易出錯;

(2)分解的結(jié)果與原式不等,這時通常采用多項式乘法還原后檢驗分解的是否正確.

八年級下冊數(shù)學(xué)知識點11

1.某工廠生產(chǎn)了一批零件共1600件,從中任意抽取了80件進行檢查,其中合格產(chǎn)品78件,其余不合格,則可估計這批零件中有______件不合格.

2.下列調(diào)查工作需采用普查方式的是()

A.環(huán)保部門對淮河某段水域的水污染情況的調(diào)查

B.電視臺對正在播出的某電視節(jié)目收視率的調(diào)查

C.質(zhì)檢部門對各廠家生產(chǎn)的電池使用壽命的調(diào)查

D.企業(yè)在給職工做工作服前進行的尺寸大小的調(diào)查

3.為了解某校九年級學(xué)生每天的睡眠時間情況,隨機調(diào)查了該校九年級20名學(xué)生,將所得數(shù)據(jù)整理并制成下表:

據(jù)此估計該校九年級學(xué)生每天的平均睡眠時間大約是______小時.

4.一養(yǎng)魚專業(yè)戶從魚塘捕得同時放養(yǎng)的草魚100條,他從中任選5條,稱得它們的質(zhì)量如下(單位:kg):1.3,1.6,1.3,1.5,1.3.則這100條魚的總質(zhì)量約為______kg.

1.總體是指_________________________,個體是指_____________________,樣本是指________________________,樣本的個數(shù)叫做___________.

2.樣本方差與標準差是衡量______________的量,其值越大,______越大.

3.頻數(shù)是指________________________;頻率是___________________________.

4.得到頻數(shù)分布直方圖的步驟_________________________________________.

5.數(shù)據(jù)的統(tǒng)計方法有____________________________________________.

八年級下冊數(shù)學(xué)知識點12

整式

1.整式:整式為單項式和多項式的統(tǒng)稱,是有理式的一部分,在有理式中可以包含加,減,乘,除、乘方五種運算,但在整式中除數(shù)不能含有字母。

2.乘法

(1)同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。

(2)冪的乘方,底數(shù)不變,指數(shù)相乘。

(3)積的乘方,先把積中的每一個因數(shù)分別乘方,再把所得的冪相乘。

3.整式的除法

(1)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。

(2)任何不等于零的數(shù)的零次冪為1。

八年級下冊數(shù)學(xué)知識點13

1)分式混合運算法則:

分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結(jié)果要求最簡.

2)分式方程的增根問題

(1)增根的產(chǎn)生:分式方程本身隱含著分母不為0的條件,當(dāng)把分式方程轉(zhuǎn)化為整式方程后,方程中未知

數(shù)允許取值的范圍擴大了,如果轉(zhuǎn)化后的整式方程的根恰好使原方程中分母的值為0,那么就會出現(xiàn)

不適合原方程的根---增根;

(2)驗根:因為解分式方程可能出現(xiàn)增根,所以解分式方程必須驗根.

列分式方程基本步驟

①審-仔細審題,找出等量關(guān)系。

②設(shè)-合理設(shè)未知數(shù)。

③列-根據(jù)等量關(guān)系列出方程(組)。

④解-解出方程(組)。注意檢驗

⑤答-答題。

3)解分式方程的基本步驟

⑴去分母,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)

⑵解整式方程,得到整式方程的解。

⑶檢驗,把所得的整式方程的解代入最簡公分母中:

如果最簡公分母為0,則原方程無解,這個未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。

產(chǎn)生增根的條件是:①是得到的整式方程的解;②代入最簡公分母后值為0。

4)分式的基本性質(zhì):

分式的分子和分母都乘以(或除以)同一個不等于零的整式,分式的值不變。

即,(C≠0),其中A、B、C均為整式。分式的符號法則:一個分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變。

約分:分數(shù)可以約分,分式與分數(shù)類似,也可以約分,根據(jù)分式的基本性質(zhì)把一個分式的分子與分母的公因式約去,這種變形稱為分式的約分。

5)分式的約分步驟:

(1)如果分式的分子和分母都是單項式或者是幾個因式乘積的形式,將它們的公因式約去;

(2)分式的分子和分母都是多項式,將分子和分母分別分解因式,再將公因式約去。

6)分式的運算:

1.分式的加減法法則:

(1)同分母的分式相加減,分母不變,把分子相加;

(2)異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法則進行計算。

2.分式的乘除法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。

3.分式的混合運算順序,先算乘方,再算乘除,最后算加減,有括號先算括號里面的。

4.對于分式化簡求值的題型要注意解題格式,要先化簡,再代人字母的值求值。

約分的方法和步驟包括:

(1)當(dāng)分子、分母是單項式時,公因式是相同因式的最低次冪與系數(shù)的公約數(shù)的積;

(2)當(dāng)分子、分母是多項式時,應(yīng)先將多項式分解因式,約去公因式。

7)通分:根據(jù)分式的基本性質(zhì),異分母的分式可以化為同分母的分式,這一過程稱為分式的通。

分式通分:將幾個異分母的分式化成同分母的分式,這種變形叫分式的通分。

(1)當(dāng)幾個分式的分母是單項式時,各分式的最簡公分母是系數(shù)的最小公倍數(shù)、相同字母的次冪的所有不同字母的積;

(2)如果各分母都是多項式,應(yīng)先把各個分母按某一字母降冪或升冪排列,再分解因式,找出最簡公分母;

(3)通分后的各分式的分母相同,通分后的各分式分別與原來的分式相等;

(4)通分和約分是兩種截然不同的變形.約分是針對一個分式而言,通分是針對多個分式而言;約分是將一個分式化簡,而通分是將一個分式化繁。

8)注意:

(1)分式的約分和通分都是依據(jù)分式的基本性質(zhì);

(2)分式的變號法則:分式的分子、分母和分式本身的符號,改變其中的任何兩個,分式的值不變。

(3)約分時,分子與分母不是乘積形式,不能約分.

3.求最簡公分母的方法是:

(1)將各個分母分解因式;

(2)找各分母系數(shù)的最小公倍數(shù);

(3)找出各分母中不同的因式,相同因式中取次數(shù)的,滿足(2)(3)的因式之積即為各分式的最簡公分母(求最簡公分母在分式的加減運算和解分式方程時起非常重要的作用)。

運算符號

如加號(+),減號(-),乘號(某或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(shù)(log,lg,ln,lb,lim),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

基本函數(shù)有哪些

正弦:sine余弦:cosine(簡寫cos)

正切:tangent(簡寫tan)

余切:cotangent(簡寫cot)

正割:secant(簡寫sec)

余割:cosecant(簡寫csc)

八年級下冊數(shù)學(xué)知識點14

第一章分式

1分式及其基本性質(zhì)

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2分式的運算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

(2)分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p

3整數(shù)指數(shù)冪的加減乘除法

4分式方程及其解法

第二章反比例函數(shù)

1反比例函數(shù)的表達式、圖像、性質(zhì)

圖像:雙曲線

表達式:y=k/x(k不為0)

性質(zhì):兩支的增減性相同;

2反比例函數(shù)在實際問題中的應(yīng)用

第三章勾股定理

1勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。

第四章四邊形

1平行四邊形

性質(zhì):對邊相等;對角相等;對角線互相平分。

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形。

推論:三角形的中位線平行第三邊,并且等于第三邊的一半。

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半。

(2)菱形

性質(zhì):菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形。

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形。

第五章數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

中考數(shù)學(xué)學(xué)習(xí)方法

1.先看筆記后做作業(yè)。

有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達到教師要求的水平。

因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時,老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個實施,在很長一段時間內(nèi),會造成很大的損失。

2.做題之后加強反思。

學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個問題,并總結(jié)我們自己的收獲。

要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說:有錢難買回頭看。做完作業(yè),回頭細看,價值極大。這一回顧,是學(xué)習(xí)過程中一個非常重要的環(huán)節(jié)。

中考數(shù)學(xué)學(xué)習(xí)技巧

必須用好你的數(shù)學(xué)筆記

記下的筆記只停留在紙上,要成為你自己的東西,必須用心去獨立體會筆記里的每一個典型例題,每一個經(jīng)典方法,每一個想法思路,完全理解并且會熟練運用才是根本。

當(dāng)然,課堂的問題解決了,其他的問題也就迎刃而解了,所以,高一的學(xué)生們,請不要輕易討厭數(shù)學(xué),因為多半是由于你不了解數(shù)學(xué),其實它很善良,也很有魅力,試著用心去學(xué),你一定會成功。

八年級下冊數(shù)學(xué)知識點15

一元一次不等式和一元一次不等式組

一、一般地,用符號(或),(或)連接的式子叫做不等式.

能使不等式成立的未知數(shù)的值,叫做不等式的解.不等式的解不,把所有滿足不等式的解集合在一起,構(gòu)成不等式的解集.求不等式解集的過程叫解不等式.

由幾個一元一次不等式組所組成的不等式組叫做一元一次不等式組

不等式組的解集:一元一次不等式組各個不等式的解集的公共部分.

等式基本性質(zhì)1:在等式的兩邊都加上(或減去)同一個數(shù)或整式,所得的結(jié)果仍是等式.基本性質(zhì)2:在等式的兩邊都乘以或除以同一個數(shù)(除數(shù)不為0),所得的結(jié)果仍是等式.

二、不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.(注:移項要變號,但不等號不變.)性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變.性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變.不等式的基本性質(zhì)1、若ab,則a+cb+c;2、若ab,c0則acbc若c0,則ac不等式的其他性質(zhì):反射性:若ab,則bb,且bc,則ac

三、解不等式的步驟:1、去分母;2、去括號;3、移項合并同類項;4、系數(shù)化為1.四、解不等式組的步驟:1、解出不等式的解集2、在同一數(shù)軸表示不等式的解集.五、列一元一次不等式組解實際問題的一般步驟:(1)審題;(2)設(shè)未知數(shù),找(不等量)關(guān)系式;(3)設(shè)元,(根據(jù)不等量)關(guān)系式列不等式(組)(4)解不等式組;檢驗并作答.

六、??碱}

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論