版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第二章軸向拉伸和壓縮材料力學1拉壓§1–1軸向拉壓的概念及實例軸向拉壓的外力特點:外力的合力作用線與桿的軸線重合。一、概念軸向拉壓的變形特點:桿的變形主要是軸向伸縮,伴隨橫向縮擴。軸向拉伸:桿的變形是軸向伸長,橫向縮短。軸向壓縮:桿的變形是軸向縮短,橫向變粗。2拉壓軸向壓縮,對應的力稱為壓力。軸向拉伸,對應的力稱為拉力。力學模型如圖3拉壓工程實例二、4拉壓5拉壓6拉壓一、內(nèi)力
指由外力作用所引起的、物體內(nèi)相鄰部分之間分布內(nèi)力系的合成(附加內(nèi)力)?!?–2內(nèi)力·截面法·軸力及軸力圖7拉壓二、截面法·軸力內(nèi)力的計算是分析構件強度、剛度、穩(wěn)定性等問題的基礎。求內(nèi)力的一般方法是截面法。1.截面法的基本步驟:①截開:在所求內(nèi)力的截面處,假想地用截面將桿件一分為二。②代替:任取一部分,其棄去部分對留下部分的作用,用作用在截開面上相應的內(nèi)力(力或力偶)代替。③平衡:對留下的部分建立平衡方程,根據(jù)其上的已知外力來計算桿在截開面上的未知內(nèi)力(此時截開面上的內(nèi)力對所留部分而言是外力)。8拉壓2.軸力——軸向拉壓桿的內(nèi)力,用N表示。例如:截面法求N。
APP簡圖APPPAN截開:代替:平衡:9①反映出軸力與截面位置變化關系,較直觀;②確定出最大軸力的數(shù)值及其所在橫截面的位置,即確定危險截面位置,為強度計算提供依據(jù)。拉壓三、
軸力圖——N(x)的圖象表示。3.軸力的正負規(guī)定:
N
與外法線同向,為正軸力(拉力)N與外法線反向,為負軸力(壓力)N>0NNN<0NNNxP+意義10拉壓[例1]圖示桿的A、B、C、D點分別作用著大小為5P、8P、4P、
P
的力,方向如圖,試畫出桿的軸力圖。解:求OA段內(nèi)力N1:設置截面如圖ABCDPAPBPCPDON1ABCDPAPBPCPD11拉壓同理,求得AB、BC、CD段內(nèi)力分別為:N2=–3P
N3=5PN4=PN2N3DPDN4CDPCPDBCDPBPCPDABCDPAPBPCPDO12拉壓軸力圖如右圖Nx2P3P5PP++–ABCDPAPBPCPDO軸力圖的特點:突變值=集中載荷13拉壓軸力(圖)的簡便求法:左左為正(右右為正)遇到向左的P,軸力N增量為正;遇到向右的P,單位軸力N增量為負。5kN8kN3kN+–3kN5kNN圖14拉壓解:距左側x截面的內(nèi)力N(x)為:[例2]圖示桿長為L,受均勻分布力q
作用,方向如圖,試畫出桿的軸力圖。LqNxxqNq
LxO15拉壓一、應力的概念
§1–3截面上的應力及強度條件問題提出:PPPP1.內(nèi)力大小不能衡量構件強度的大小。2.強度:①內(nèi)力在截面分布集度應力;
②材料承受荷載的能力。1.定義:由外力引起的內(nèi)力集度。16拉壓工程構件,大多數(shù)情形下,內(nèi)力并非均勻分布,集度的定義不僅準確而且重要,因為“破壞”或“失效”往往從內(nèi)力集度最大處開始。PAM①平均應力:②全應力(總應力):2.應力的表示:17拉壓③全應力分解為:pM垂直于截面的應力稱為“正應力”
(NormalStress);位于截面內(nèi)的應力稱為“剪應力”(ShearingStress)。18拉壓變形前1.變形規(guī)律試驗及平面假設:平面假設:原為平面的橫截面在變形后仍為平面??v向纖維變形相同。abcd受載后PPd′a′c′b′二、拉(壓)桿橫截面上的應力19拉壓均勻材料、均勻變形,內(nèi)力當然均勻分布。2.拉伸應力:sNP軸力引起的正應力——
:在橫截面上均布。危險截面:內(nèi)力最大的面,截面尺寸最小的面。危險點:應力最大的點。3.危險截面及最大工作應力:20拉壓直桿、桿的截面無突變、截面到載荷作用點有一定的距離。4.公式的應用條件:6.應力集中(StressConcentration):在截面尺寸突變處,應力急劇變大。5.Saint-Venant原理:離開載荷作用處一定距離,應力分布與大小不受外載荷作用方式的影響。21拉壓Saint-Venant原理與應力集中示意圖(紅色實線為變形前的線,紅色虛線為紅色實線變形后的形狀。)變形示意圖:abcPP應力分布示意圖:Ps22拉壓23拉壓24拉壓7.強度設計準則(StrengthDesign):
其中:[]--許用應力,max--危險點的最大工作應力。②設計截面尺寸:依強度準則可進行三種強度計算:保證構件不發(fā)生強度破壞并有一定安全余量的條件準則。①校核強度:③許可載荷:
25例題解:1、研究節(jié)點A的平衡。已知:F=1000kN,b=25mm,h=90mm,α=200,斜桿由兩矩形截面桿疊合而成,〔σ〕=120MPa。試校核斜桿的強度。FF得2、強度校核斜桿強度足夠F26例題D=350mm,p=1MPa。螺栓[σ]=40MPa,求螺栓直徑。每個螺栓承受軸力為總壓力的1/6解:油缸蓋受到的力根據(jù)強度條件即螺栓的軸力為得即螺栓的直徑為27拉壓[例]
已知三鉸屋架如圖,承受豎向均布載荷,載荷的分布集度為:q
=4.2kN/m,屋架中的鋼拉桿直徑d=16mm,許用應力[]=170MPa。試校核剛拉桿的強度。鋼拉桿4.2mq8.5mCAB28拉壓①整體平衡求支反力解:鋼拉桿8.5mq4.2mYARBXACBA29拉壓③應力:④強度校核與結論:
此桿滿足強度要求。②局部平衡求軸力:
qYAXAYCXCN30計算圖示結構BC和CD桿橫截面上的正應力值。已知CD桿為φ28的圓鋼,BC桿為φ22的圓鋼。20kN18kNDEC30OBA4m4m1m例NBC以AB桿為研究對像以CDE為研究對像NCD31拉壓[例5]簡易起重機構如圖,AC為剛性梁,吊車與吊起重物總重為P,為使
BD桿最輕,角
應為何值?
已知BD
桿的許用應力為[]。分析:xLhqPABCD32拉壓
BD桿面積A:解:
BD桿內(nèi)力N(q):取AC為研究對象,如圖YAXAqNBxLPABC33拉壓YAXAqNBxLPABC③求VBD
的最小值:34拉壓例:AC為50×50×5的等邊角鋼,AB為10號槽鋼,[σ]=120MPa。求F。解:1、計算軸力。(設斜桿為1桿,水平桿為2桿)取節(jié)點A為研究對象AFα35拉壓2、根據(jù)斜桿的強度,求許可載荷
3、根據(jù)水平桿的強度,求許可載荷查表得水平桿AB的面積為A2=2×12.74cm2查表得斜桿AC的面積為A1=2×4.8cm24、許可載荷36拉壓三、拉(壓)桿斜截面上的應力設有一等直桿受拉力P作用。求:斜截面k-k上的應力。PPkka解:采用截面法由平衡方程:Pa=P則:Aa:斜截面面積;Pa:斜截面上內(nèi)力。由幾何關系:代入上式,得:斜截面上全應力:PkkaPa37拉壓PPkka斜截面上全應力:PkkaPa分解:pa=反映:通過構件上一點不同截面上應力變化情況。當=90°當=0,90°當=0°(橫截面上存在最大正應力)當=±45°(45°斜截面上剪應力達到最大)tasaa382、單元體:單元體—構件內(nèi)的點的代表物,是包圍被研究點的無限小的幾何體,常用的是正六面體。
單元體的性質(zhì)—a、平行面上,應力均布;
b、平行面上,應力相等。3、拉壓桿內(nèi)一點M
的應力單元體:
1.一點的應力狀態(tài):過一點有無數(shù)的截面,這一點的各個截面上的應力情況,稱為這點的應力狀態(tài)。補充:拉壓sPMssss39取分離體如圖3,a逆時針為正;ta繞研究對象順時針轉為正;由分離體平衡得:拉壓4、拉壓桿斜截面上的應力sssstasaxs0圖340例6
直徑為d=1cm
桿受拉力P=10kN的作用,試求最大剪應力,并求與橫截面夾角30°的斜截面上的正應力和剪應力。解:拉壓桿斜截面上的應力,直接由公式求之:
拉壓41例7圖示拉桿沿mn由兩部分膠合而成,受力P,設膠合面的許用拉應力為[]=100MPa
;許用剪應力為[]=50MPa
,并設桿的強度由膠合面控制,桿的橫截面積為A=4cm2,試問:為使桿承受最大拉力,角值應為多大?(規(guī)定:在0~60度之間)。聯(lián)立(1)、(2)得:拉壓PPmna解:Pa6030B42(1)、(2)式的曲線如圖(2),顯然,B點左側由剪應力控制桿的強度,B點右側由正應力控制桿的強度,當a=60°時,由(2)式得解(1)、(2)曲線交點處:拉壓討論:若Pa6030B143§1-4材料在拉伸和壓縮時的力學性能一、試驗條件及試驗儀器1、試驗條件:常溫(20℃);靜載(及其緩慢地加載);
標準試件。拉壓dh力學性能:材料在外力作用下表現(xiàn)的有關強度、變形方面的特性。44拉壓452、試驗儀器:萬能材料試驗機;變形儀(常用引伸儀)。拉壓46二、低碳鋼試件的拉伸圖(P--L圖)三、低碳鋼試件的應力--應變曲線(--圖)拉壓47拉壓48拉壓四個階段1、彈性階段ob比例極限彈性極限2、屈服階段bc(失去抵抗變形的能力)屈服極限3、強化階段ce(恢復抵抗變形的能力)強度極限4、局部徑縮階段ef49拉壓兩個塑性指標:斷后伸長率斷面收縮率為塑性材料為脆性材料低碳鋼的為塑性材料50拉壓四、卸載定律及冷作硬化1、彈性范圍內(nèi)卸載、再加載2、過彈性范圍卸載、再加載即材料在卸載過程中應力和應變是線形關系,這就是卸載定律。材料的比例極限增高,延伸率降低,稱之為冷作硬化或加工硬化。51拉壓五其它材料拉伸時的力學性質(zhì)52無明顯屈服現(xiàn)象的塑性材料
0.2s0.2名義屈服應力:
0.2
,即此類材料的失效應力。拉壓1234102030e(%)0100200300400500600700800900s(MPa)1、錳鋼2、硬鋁3、退火球墨鑄鐵4、低碳鋼53拉壓六、鑄鐵拉伸時的機械性能bL---鑄鐵拉伸強度極限(失效應力)54拉壓七材料壓縮時的力學性質(zhì)塑性材料(低碳鋼)的壓縮屈服極限比例極限彈性極限拉伸與壓縮在屈服階段以前完全相同。E---彈性摸量55拉壓脆性材料(鑄鐵)的壓縮脆性材料的抗拉與抗壓性質(zhì)不完全相同壓縮時的強度極限遠大于拉伸時的強度極限56拉壓八、安全系數(shù)和許用應力工作應力極限應力塑性材料脆性材料塑性材料的許用應力脆性材料的許用應力
n—安全系數(shù)
—許用應力。57
1、桿的縱向總變形:
3、平均線應變:
2、線應變:單位長度的線變形。一、拉壓桿的變形及應變§1-5拉壓桿的變形彈性定律拉壓abcdL584、x點處的縱向線應變:6、x點處的橫向線應變:5、桿的橫向變形:拉壓PPd′a′c′b′L159二、拉壓桿的彈性定律1、等內(nèi)力拉壓桿的彈性定律2、變內(nèi)力拉壓桿的彈性定律內(nèi)力在n段中分別為常量時※“EA”稱為桿的抗拉壓剛度。拉壓PPN(x)dxx603、單向應力狀態(tài)下的彈性定律4、泊松比(或橫向變形系數(shù))拉壓三、是誰首先提出彈性定律
彈性定律是材料力學等固體力學一個非常重要的基礎。一般認為它是由英國科學家胡克(1635一1703)首先提出來的,所以通常叫做胡克定律。其實,在胡克之前1500年,我國早就有了關于力和變形成正比關系的記載。61“”胡:請問,弛其弦,以繩緩援之是什么意思?
鄭:這是講測量弓力時,先將弓的弦松開,另外用繩子松松地套住弓的兩端,然后加重物,測量。
胡:我明白了。這樣弓體就沒有初始應力,處于自然狀態(tài)。
東漢經(jīng)學家鄭玄(127—200)對《考工記·弓人》中“量其力,有三均”作了這樣的注釋:“假令弓力勝三石,引之中三尺,弛其弦,以繩緩擐之,每加物一石,則張一尺?!?圖)拉壓62
拉壓鄭:后來,到了唐代初期,賈公彥對我的注釋又作了注疏,他說:鄭又云假令弓力勝三石,引之中三尺者,此即三石力弓也。必知弓力三石者,當弛其弦以繩緩擐之者,謂不張之,別以繩系兩箭,乃加物一石張一尺、二石張二尺、三石張三尺。其中”“兩蕭就是指弓的兩端。一條“胡:鄭老先生講“每加物一石,則張一尺”。和我講的完全是同一個意思。您比我早1500中就記錄下這種正比關系,的確了不起,和推測》一文中早就推崇過貴國的古代文化:目前我們還只是剛剛走到這個知識領域的邊緣,然而一旦對它有了充分的認識,就將會在我們面前展現(xiàn)出一個迄今為止只被人們神話般地加以描述的知識王國”。1686年《關于中國文字和語言的研究真是令人佩服之至』我在63解:變形量可能已超出了“線彈性”范圍,故,不可再應用“彈性定律”。應如下計算:例銅絲直徑d=2mm,長L=500mm,材料的拉伸曲線如圖所示。如欲使銅絲的伸長為30mm,則大約需加多大的力P?
由拉伸圖知:拉壓s(MPa)e(%)64C'1、怎樣畫小變形放大圖?變形圖嚴格畫法,圖中弧線;求各桿的變形量△Li
,如圖;變形圖近似畫法,圖中弧之切線。例
小變形放大圖與位移的求法。拉壓ABCL1L2PC"652、寫出圖2中B點位移與兩桿變形間的關系拉壓ABCL1L2B'解:變形圖如圖2,B點位移至B'點,由圖知:66拉壓圖示結構,橫梁AB是剛性桿,吊桿CD是等截面直桿,B點受荷載P作用,試在下面兩種情況下分別計算B點的位移δB。1、已經(jīng)測出CD桿的軸向應變ε;2、已知CD桿的抗拉剛度EA.
例題1.已知εB1C1DFCALLaB22剛桿67拉壓B1C1FCALLB22剛桿2.已知EA68例
設橫梁ABCD為剛梁,橫截面面積為
76.36mm2的鋼索繞過無摩擦的定滑輪。設
P=20kN,試求剛索的應力和
C點的垂直位移。設剛索的E=177GPa。解:方法1:小變形放大圖法
1)求鋼索內(nèi)力:以ABCD為對象2)鋼索的應力和伸長分別為:拉壓800400400DCPAB60°60°PABCDTTYAXA69拉壓CPAB60°60°800400400DAB60°60°DB'D'C3)變形圖如左圖,C點的垂直位移為:70§1-6拉壓超靜定問題及其處理方法1、超靜定問題:單憑靜平衡方程不能確定出全部未知力
(外力、內(nèi)力、應力)的問題。一、超靜定問題及其處理方法拉壓2、超靜定的處理方法:平衡方程、變形協(xié)調(diào)方程、物理方程相結合,進行求解。71例8
設1、2、3三桿用鉸鏈連接如圖,已知:各桿長為:L1=L2、
L3=L
;各桿面積為A1=A2=A、A3
;各桿彈性模量為:E1=E2=E、E3。外力沿鉛垂方向,求各桿的內(nèi)力。拉壓CPABD123解:平衡方程:PAN1N3N272幾何方程——變形協(xié)調(diào)方程:物理方程——彈性定律:補充方程:由幾何方程和物理方程得。解由平衡方程和補充方程組成的方程組,得:拉壓CABD123A173一、受力分析(列平衡方程);
二、建立補充方程:作變形協(xié)調(diào)圖
幾何方程—變形協(xié)調(diào)方程;
物理方程—彈性定律;
三、解方程組。拉壓3、超靜定問題的方法步驟:74例9
木制短柱的四角用四個40404的等邊角鋼加固,角鋼和木材的許用應力分別為[]1=160MPa和[]2=12MPa,彈性模量分別為E1=200GPa
和E2=10GPa;求許可載荷P。幾何方程物理方程及補充方程:解:受力分析—平衡方程:拉壓Py4N1N2P75拉壓解平衡方程和補充方程,得:求結構的許可載荷:由型鋼表查得:A1=3.086cm276拉壓例:剛性梁AD由1、2、3桿懸掛,已知三桿材料相同,許用應力為[σ],材料的彈性模量為E,桿長均為l,橫截面面積均為A,試求結構的許可載荷[P]77拉壓解:靜力平衡條件:變形協(xié)調(diào)條件:即:78拉壓聯(lián)立求解(1)和(2),得:3桿軸力為最大,其強度條件為:79、幾何方程解:、平衡方程:2、靜不定問題存在裝配應力。二、裝配應力——預應力1、靜定問題無裝配應力。拉壓如圖,3號桿的尺寸誤差為,求各桿的裝配內(nèi)力。ABC12ABC12DA1380、物理方程及補充方程:、解平衡方程和補充方程,得:d拉壓A1N1N2N3AA1811、靜定問題無溫度應力。三、裝配溫度如圖,1、2號桿的尺寸及材料都相同,當結構溫度由T1變到T2時,求各桿的溫度內(nèi)力。(各桿的線膨脹系數(shù)分別為i;△T=T2-T1)拉壓ABC12CABD123A12、靜不定問題存在溫度應力。82拉壓CABD123A1、幾何方程解:、平衡方程:、物理方程:PAN1N3N283拉壓CABD123A1、補充方程解平衡方程和補充方程,得:84
拉壓aaaaN1N2例10
如圖,階梯鋼桿的上下兩端在T1=5℃
時被固定,桿的上下兩段的面積分別
=cm2,
=cm2,當溫度升至T2
=25℃時,求各桿的溫度應力。
(線膨脹系數(shù)=12.5×;
彈性模量E=200GPa)、幾何方程:解:、平衡方程:85、物理方程解平衡方程和補充方程,得:、補充方程、溫度應力拉壓86§2-7連接件的剪切與擠壓強度計算一、連接件的受力特點和變形特點:1、連接件剪切在構件連接處起連接作用的部件,稱為連接件。例如:螺栓、鉚釘、鍵等。連接件雖小,起著傳遞載荷的作用。特點:可傳遞一般力,可拆卸。PP螺栓87PP剪切鉚釘特點:可傳遞一般力,不可拆卸。如橋梁桁架結點處于它連接。無間隙m軸鍵齒輪特點:傳遞扭矩。882、受力特點和變形特點:剪切nn(合力)(合力)PP以鉚釘為例:①受力特點:構件受兩組大小相等、方向相反、作用線相互很近(差一個幾何平面)的平行力系作用。②變形特點:構件沿兩組平行力系的交界面發(fā)生相對錯動。89剪切nn(合力)(合力)PP③剪切面:構件將發(fā)生相互的錯動面,如n–n
。④剪切面上的內(nèi)力:
內(nèi)力—剪力Q
,其作用線與剪切面平行。PnnQ剪切面90剪切nn(合力)(合力)PP3、連接處破壞三種形式:
①剪切破壞沿鉚釘?shù)募羟忻婕魯?,如沿n–n面剪斷
。
②擠壓破壞鉚釘與鋼板在相互接觸面上因擠壓而使?jié)哼B接松動,發(fā)生破壞。
③拉伸破壞PnnQ剪切面鋼板在受鉚釘孔削弱的截面處,應力增大,易在連接處拉斷。91剪切二、剪切的實用計算實用計算方法:根據(jù)構件的破壞可能性,采用能反映受力基本特征,并簡化計算的假設,計算其名義應力,然后根據(jù)直接試驗的結果,確定其相應的許用應力,以進行強度計算。適用:構件體積不大,真實應力相當復雜情況,如連接件等。實用計算假設:假設剪應力在整個剪切面上均勻分布,等于剪切面上的平均應力。92剪切1、剪切面--AQ:錯動面。
剪力--Q:剪切面上的內(nèi)力。2、名義剪應力--:3、剪切強度條件(準則):nn(合力)(合力)PPPnnQ剪切面工作應力不得超過材料的許用應力。93三、擠壓的實用計算1、擠壓力―Pjy
:接觸面上的合力。剪切擠壓:構件局部面積的承壓現(xiàn)象。擠壓力:在接觸面上的壓力,記Pjy
。假設:擠壓應力在有效擠壓面上均勻分布。942、擠壓面積:接觸面在垂直Pjy方向上的投影面的面積。3、擠壓強度條件(準則):
工作擠壓應力不得超過材料的許用擠壓應力。剪切擠壓面積95四、應用剪切96例1
木榫接頭如圖所示,a=b
=12cm,h=35cm,c=4.5cm,
P=40KN,試求接頭的剪應力和擠壓應力。解::受力分析如圖∶:剪應力和擠壓應力剪切面和剪力為∶擠壓面和擠壓力為:剪切PPPPbachPP97mdP解:鍵的受力分析如圖例齒輪與軸由平鍵(b×h×L=20×12×100)連接,它傳遞的扭矩m=2KNm,軸的直徑d=70mm,鍵的許用剪應力為[]=60M
Pa,許用擠壓應力為[jy]=100MPa,試校核鍵的強度。
剪切mbhL98綜上,鍵滿足強度要求。剪應力和擠壓應力的強度校核剪切mdPbhL99解:鍵的受力分析如圖例齒輪與軸由平鍵(b=16mm,h=10mm,)連接,它傳遞的扭矩m=1600Nm,軸的直徑d=50mm,鍵的許用剪應力為[]=80MPa,許用擠壓應力為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年PU聚酯封閉底漆行業(yè)深度研究分析報告
- 2025年直身鉆咀行業(yè)深度研究分析報告
- 2025年度荒山荒坡土地承包經(jīng)營權林業(yè)資源保護合同范本2篇
- 2025年高新技術產(chǎn)業(yè)投資風險評估合同書正規(guī)范本3篇
- 2025年度安全監(jiān)控錄像系統(tǒng)升級改造合同2篇
- 二零二五年度新材料技術研發(fā)出資人股權轉讓合同模板4篇
- 二零二五年度觸控一體機智能校園管理系統(tǒng)供銷合同4篇
- 2024-2025年中國債券型基金行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 2025年中國煤炭安全設備行業(yè)全景評估及投資規(guī)劃建議報告
- 二零二五年度冷鮮肉冷鏈配送物流優(yōu)化合作協(xié)議2篇
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學試卷
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識培訓課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎理論-肝
- 小學外來人員出入校門登記表
- 《土地利用規(guī)劃學》完整課件
評論
0/150
提交評論