版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題14與圓有關(guān)的證明和計(jì)算(1)切線判定:=1\*GB3①經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線=2\*GB3②和圓只有一個(gè)公共點(diǎn)的直線是圓的切線(定義法)=3\*GB3③如果圓心到一條直線的距離等于圓的半徑,那么這條直線是圓的切線(2)切線判定常用的證明方法:①知道直線和圓有公共點(diǎn)時(shí),連半徑,證垂直;②不知道直線與圓有沒(méi)有公共點(diǎn)時(shí),作垂直,證垂線段等于半徑.1.如圖,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0為直徑作圓SKIPIF1<0,分別交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0的延長(zhǎng)線于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0交線段SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求證:EH=CH;(2)求證:SKIPIF1<0是圓SKIPIF1<0的切線;(3)若SKIPIF1<0,求圓SKIPIF1<0的半徑.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)SKIPIF1<0.【分析】(1)先判斷出SKIPIF1<0是等腰三角形,即可得出結(jié)論;(2)連接OD,先判斷出SKIPIF1<0是等腰三角形,進(jìn)而得出SKIPIF1<0,進(jìn)而判斷出SKIPIF1<0,即可得出結(jié)論(3)設(shè)SKIPIF1<0的半徑為r,即SKIPIF1<0,先判斷出SKIPIF1<0,進(jìn)而得出SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,進(jìn)而得出SKIPIF1<0,再判斷出SKIPIF1<0SKIPIF1<0SKIPIF1<0,得出比例式建立方程求解,即可求出答案.(1)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在⊙SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0是等腰三角形,∵SKIPIF1<0,∴SKIPIF1<0(2)證明:連接SKIPIF1<0,如圖1,SKIPIF1<0,SKIPIF1<0是等腰三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的半徑,SKIPIF1<0是圓SKIPIF1<0的切線;(3)連接SKIPIF1<0,如圖1,,設(shè)⊙SKIPIF1<0的半徑為SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0是等腰三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等腰三角形,∵SKIPIF1<0是⊙SKIPIF1<0的直徑,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在⊙SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0舍SKIPIF1<0,綜上所述,⊙SKIPIF1<0的半徑為SKIPIF1<0.【我思故我在】此題是圓的綜合題,主要考查了切線的判定和性質(zhì),等腰三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),用方程的思想解決問(wèn)題是解(3)的關(guān)鍵.2.小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在SKIPIF1<0中,SKIPIF1<0是劣弧SKIPIF1<0的中點(diǎn),直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0.請(qǐng)證明此結(jié)論;(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,SKIPIF1<0,SKIPIF1<0組成SKIPIF1<0的一條折弦.SKIPIF1<0是劣弧SKIPIF1<0的中點(diǎn),直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0.可以通過(guò)延長(zhǎng)SKIPIF1<0、SKIPIF1<0相交于點(diǎn)SKIPIF1<0,再連接SKIPIF1<0證明結(jié)論成立.請(qǐng)寫出證明過(guò)程;(3)如圖3,SKIPIF1<0,SKIPIF1<0組成SKIPIF1<0的一條折弦,若SKIPIF1<0是優(yōu)弧SKIPIF1<0的中點(diǎn),直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0與SKIPIF1<0之間存在怎樣的數(shù)量關(guān)系?請(qǐng)寫出證明過(guò)程.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)SKIPIF1<0,理由見(jiàn)解析【分析】(1)連接SKIPIF1<0,SKIPIF1<0,易證SKIPIF1<0為等腰三角形,根據(jù)等腰三角形三線合一這一性質(zhì),可以證得SKIPIF1<0.(2)根據(jù)圓內(nèi)接四邊形的性質(zhì),先SKIPIF1<0,再證SKIPIF1<0為等腰三角形,進(jìn)一步證得SKIPIF1<0,從而證得結(jié)論.(3)根據(jù)SKIPIF1<0,從而證明SKIPIF1<0,得出SKIPIF1<0,然后判斷出SKIPIF1<0,進(jìn)而求得SKIPIF1<0.【詳解】證明:(1)如圖1,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是劣弧SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等腰三角形,SKIPIF1<0,SKIPIF1<0;(2)如圖2,延長(zhǎng)SKIPIF1<0、SKIPIF1<0相交于點(diǎn)SKIPIF1<0,再連接SKIPIF1<0,SKIPIF1<0是圓內(nèi)接四邊形,SKIPIF1<0,SKIPIF1<0是劣弧SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等腰三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0.連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0相交于點(diǎn)SKIPIF1<0,SKIPIF1<0弧SKIPIF1<0弧SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【我思故我在】本題主要考查了垂徑定理及其推論,等腰三角形的性質(zhì),三角形全等的判定及性質(zhì),解題的關(guān)鍵是掌握垂徑定理SKIPIF1<0在5個(gè)條件中,1.平分弦所對(duì)的一條??;2.平分弦所對(duì)的另一條弧;3.平分弦;4.垂直于弦;5.經(jīng)過(guò)圓心(或者說(shuō)直徑).只要具備任意兩個(gè)條件,就可以推出其他的三個(gè).3.如圖,AB是SKIPIF1<0的直徑,AC是SKIPIF1<0的切線,連接OC,弦SKIPIF1<0,連接BC,DC.SKIPIF1<0求證:DC是SKIPIF1<0的切線;SKIPIF1<0若SKIPIF1<0,求SKIPIF1<0的值.【分析】SKIPIF1<0連接OD,如圖,利用切線的性質(zhì)得SKIPIF1<0,再利用平行線的性質(zhì)證明SKIPIF1<0,則可判定SKIPIF1<0≌SKIPIF1<0,從而得到SKIPIF1<0,然后根據(jù)切線的判定方法得到結(jié)論;SKIPIF1<0作SKIPIF1<0于E,如圖,在SKIPIF1<0中由于SKIPIF1<0,則可設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,再在SKIPIF1<0中利用正弦可表示出SKIPIF1<0,利用勾股定理可得到SKIPIF1<0,于是得到SKIPIF1<0,從而在SKIPIF1<0中根據(jù)正切定義得到SKIPIF1<0,然后根據(jù)平行線的性質(zhì)即可得到SKIPIF1<0的值.【詳解】SKIPIF1<0證明:連接OD,如圖,SKIPIF1<0為切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線;SKIPIF1<0解:作SKIPIF1<0于E,如圖,在SKIPIF1<0中,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值為SKIPIF1<0.【我思故我在】本題考查了切線的性質(zhì):經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑SKIPIF1<0判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過(guò)圓心作這條直線的垂線”;有切線時(shí),常常“遇到切點(diǎn)連圓心得半徑”SKIPIF1<0也考查了解直角三角形.4.圖,SKIPIF1<0是SKIPIF1<0的直徑,點(diǎn)C在SKIPIF1<0的延長(zhǎng)線上,SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點(diǎn)D,過(guò)點(diǎn)A作SKIPIF1<0,垂足為點(diǎn)E.(1)判斷直線SKIPIF1<0與SKIPIF1<0的位置關(guān)系,并說(shuō)明理由;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的半徑以及線段SKIPIF1<0的長(zhǎng).【答案】(1)SKIPIF1<0是SKIPIF1<0的切線,理由見(jiàn)解析(2)3;SKIPIF1<0【分析】(1)連接SKIPIF1<0,根據(jù)等腰三角形的性質(zhì)得出SKIPIF1<0,根據(jù)角平分線的定義得出SKIPIF1<0,即SKIPIF1<0,根據(jù)平行線的判定方法得出SKIPIF1<0,根據(jù)SKIPIF1<0,得出SKIPIF1<0,根據(jù)即可得出結(jié)論;(2)設(shè)SKIPIF1<0,在SKIPIF1<0中,由勾股定理列出關(guān)于x的方程即可;先求出SKIPIF1<0,然后再根據(jù)SKIPIF1<0,得出SKIPIF1<0,代入數(shù)據(jù)即可得出答案.【詳解】(1):SKIPIF1<0是SKIPIF1<0的切線,理由如下:連接OD,如圖所示:∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是半徑,∴SKIPIF1<0是SKIPIF1<0的切線;(2)解:設(shè)SKIPIF1<0,在SKIPIF1<0中,由勾股定理得,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即半徑為3;∵SKIPIF1<0,∴SKIPIF1<0,根據(jù)解析(1)可知,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0.【我思故我在】本題主要考查了切線的判定,平行線的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理,解題的關(guān)鍵是根據(jù)平行線的性質(zhì)得出SKIPIF1<0.5.如圖,在等腰SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0為直徑的SKIPIF1<0與SKIPIF1<0交于點(diǎn)D,SKIPIF1<0,垂足為E,SKIPIF1<0的延長(zhǎng)線與SKIPIF1<0的延長(zhǎng)線交于點(diǎn)F.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0的半徑為SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長(zhǎng).【詳解】(1)證明:如圖,連接SKIPIF1<0,∵SKIPIF1<0,
∴SKIPIF1<0.∵SKIPIF1<0,
∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的半徑,∴SKIPIF1<0是SKIPIF1<0的切線;(2)解:如圖,連接SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的直徑,
∴SKIPIF1<0.∵SKIPIF1<0,
∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0∴SKIPIF1<0.【我思故我在】本題考查等腰三角形的性質(zhì),平行線的判定和性質(zhì),切線的判定,圓周角定理,相似三角形的判定和性質(zhì)等知識(shí).連接常用的輔助線是解題關(guān)鍵.6.如圖,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0為直徑的SKIPIF1<0與斜邊SKIPIF1<0交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為邊SKIPIF1<0的中點(diǎn),連接SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)填空①若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________;②當(dāng)SKIPIF1<0___________SKIPIF1<0時(shí),以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形是正方形.【答案】(1)見(jiàn)解析(2)①SKIPIF1<0;②SKIPIF1<0【詳解】(1)證明:∵SKIPIF1<0是直徑,∴SKIPIF1<0,∵點(diǎn)SKIPIF1<0為邊SKIPIF1<0的中點(diǎn),∴DE=CE=BE,∴SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的切線.(2)解:①∵在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0;②只要SKIPIF1<0,以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形就是正方形,則SKIPIF1<0,故答案為:SKIPIF1<0.【我思故我在】本題考查了圓的切線的判定及解直角三角形的知識(shí)和正方形的判定,通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形是解答本題的關(guān)鍵.7.如圖,AB是⊙O的直徑,弦SKIPIF1<0,E是CA延長(zhǎng)線上的一點(diǎn),連接DE交⊙O于點(diǎn)F連接AF,CE.(1)若SKIPIF1<0,求SKIPIF1<0的度數(shù).(2)求證:AF平分SKIPIF1<0.(3)若SKIPIF1<0,SKIPIF1<0,且CF經(jīng)過(guò)圓心O,求CE的長(zhǎng).【答案】(1)70°(2)詳見(jiàn)解析(3)SKIPIF1<0【分析】(1)由垂徑定理得到SKIPIF1<0,從而得到SKIPIF1<0與SKIPIF1<0的關(guān)系,通過(guò)直角三角形的性質(zhì)可以得到SKIPIF1<0,由圓周角定理的推理即可得出SKIPIF1<0;(2)由垂徑定理和圓周角定理的推理可以得出SKIPIF1<0,再由圓內(nèi)接四邊形和得出SKIPIF1<0與SKIPIF1<0的關(guān)系,從而得到SKIPIF1<0,由圓周角定理的推理得出SKIPIF1<0與SKIPIF1<0的關(guān)系,從而得出SKIPIF1<0與SKIPIF1<0的關(guān)系,得證;(3)由垂徑定理可以得出CH,由勾股定理得出OH,從而得出AH的長(zhǎng),再由勾股定理得出AC的長(zhǎng),由SKIPIF1<0,根據(jù)平行線分線段成比例定理,得出SKIPIF1<0,從而得出CE的長(zhǎng).(1)(1)解:如圖,連接OD,AD,設(shè)AB交CD于H.∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴∠AFC=∠ADH=70°.(2)(2)證明:∵AB是直徑,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴AF平分SKIPIF1<0.(3)(3)解:如圖,設(shè)AB交CD于H.∵AB是直徑,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∵CF是直徑,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【我思故我在】本題考查了垂徑定理、圓周角定理及推理、勾股定理、平行線分線段成比例定理,熟練掌握相關(guān)定理是解決本題的關(guān)鍵.8.如圖,四邊形ABCD內(nèi)接于⊙O,BC為⊙O的直徑,AC與BD交于點(diǎn)E,P為CB延長(zhǎng)線上一點(diǎn),連接PA,且∠PAB=∠ADB.(1)求證:PA為⊙O的切線;(2)若AB=6,tan∠ADB=SKIPIF1<0,求PB的長(zhǎng);(3)在(2)的條件下,若AD=CD,求△CDE的面積.【答案】(1)見(jiàn)解析(2)SKIPIF1<0(3)5【分析】(1)連接OA,根據(jù)等腰三角形的性質(zhì)得到∠OAB=∠OBA,根據(jù)圓周角定理得到∠CAB=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)根據(jù)三角函數(shù)的定義得到AC=8,根據(jù)勾股定理得到BC=SKIPIF1<0,求得OB=5,過(guò)B作BF⊥AP于F,設(shè)AF=4k,BF=3k,求得BF=SKIPIF1<0,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)連接OD交AC于H,根據(jù)垂徑定理得到AH=CH=4,得到OH=SKIPIF1<0,根據(jù)相似三角形的性質(zhì)得到DE=SKIPIF1<0,根據(jù)三角形的面積公式即可得到結(jié)論.(1)證明:連接OA,∵OA=OB,∴∠OAB=∠OBA,∵BC為⊙O的直徑,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∵∠ADB=∠ACB=∠PAB,∴∠PAB+∠OAB=90°,∴∠OAP=90°,∴PA為⊙O的切線;(2)解:∵∠ADB=∠ACB,∴tan∠ADB=tan∠ACB=SKIPIF1<0,∵AB=6,∴AC=8,∴BC=SKIPIF1<0,∴OB=5,過(guò)B作BF⊥AP于F,∵∠ADB=∠BAF,∴tan∠ADB=tan∠BAF=SKIPIF1<0,∴設(shè)AF=4k,BF=3k,∴AB=5k=6,∴k=SKIPIF1<0,∴BF=SKIPIF1<0,∵OA⊥AP,BF⊥AP,∴BFSKIPIF1<0OA,∴△PBF∽△POA,∴SKIPIF1<0,即SKIPIF1<0,∴PB=SKIPIF1<0;(3)解:連接OD交AC于H,∵AD=CD,∴SKIPIF1<0,∴OD⊥AC,∴AH=CH=4,∴OH=SKIPIF1<0,∴DH=2,∴CD=SKIPIF1<0,∴BD=SKIPIF1<0,∵∠ADE=∠BDA,∠DAE=∠ABD,∴△ADE∽△BDA,∴SKIPIF1<0,即SKIPIF1<0,∴DE=SKIPIF1<0,∴△CDE的面積為SKIPIF1<0.9.問(wèn)題提出(1)如圖1,AB為圓O的弦,在圓O上找一點(diǎn)P,使點(diǎn)P到AB的距離最大.(2)問(wèn)題探究如圖2,在扇形AMB中,點(diǎn)M為扇形所在圓的圓心,點(diǎn)P為SKIPIF1<0上任意一點(diǎn),連接PM,與AB交于點(diǎn)Q,若AB=10,AM=7,求出PQ的最大值.(3)問(wèn)題解決如圖3,小華家有一塊扇形AOB的田地,線段OA、線段OB以及SKIPIF1<0分別為扇形AOB的邊沿部分.經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),小華爸爸打算在扇形AOB的田地中圈出一片空地用作種植當(dāng)季蔬菜,具體操作方式如下:在SKIPIF1<0上選取點(diǎn)C,過(guò)點(diǎn)C作CMSKIPIF1<0OB,CNSKIPIF1<0OA,則四邊形MONC為小華爸爸所圈空地.已知:扇形AOB的圓心角∠AOB=60°,OA=OB=90m,且用于修建圍擋的線段MC部分與線段CN部分的成本均為30元/米.請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算:小華爸爸最終所花費(fèi)的修建費(fèi)預(yù)算最多是多少元?(即求出CM+CN的最大值)(結(jié)果保留整數(shù),取SKIPIF1<01.73)【答案】(1)見(jiàn)解析(2)SKIPIF1<0(3)210元解:如圖1,過(guò)點(diǎn)O作OP⊥AB,此時(shí)點(diǎn)P處于SKIPIF1<0中心位置,∵在圓內(nèi),弦所對(duì)弧的中點(diǎn)到弦的垂線段距離最大,∴此時(shí)P點(diǎn)到AB的距離最大;(2)解:如下圖,Q點(diǎn)在AB的中點(diǎn)時(shí),QM最小,則PQ最大,∵M(jìn)A=MB,AQ=BQ,∴QM⊥AM,∵AB=10,AM=7,∴AQ=BQ=5,∴SKIPIF1<0,∴SKIPIF1<0;(3)解:由題意可知,當(dāng)點(diǎn)C處于SKIPIF1<0中點(diǎn)時(shí),對(duì)角線最長(zhǎng),此時(shí),OC=OA=90,AB⊥OC與點(diǎn)Q,∵CMSKIPIF1<0OB,∴∠AMC=60°,∵CNSKIPIF1<0OA,∴∠CNB=60°,∴∠CMQ=∠CNQ=60°,∴△CMN為等邊三角形,同理證明△OMN也為等邊三角形,在Rt△OMQ中,OQSKIPIF1<0OC=45,OM=2MQ,OM2=MQ2+OQ2,∴OM=15SKIPIF1<026.01,∴?OMCN的周長(zhǎng)C=OM+ON+NC+MC=4OM=8MQ=208.08≈209(不足1米按照1米計(jì)算),∵成本均為30元/米,∴SKIPIF1<0,則預(yù)算最多為:7×30=210(元).【我思故我在】本題考查了弦所對(duì)弧的中點(diǎn)到弦的垂線段距離最大,點(diǎn)到弦之間的距離垂線段最短,平行四邊形周長(zhǎng)的最大值,解題關(guān)鍵是把求平行四邊形四條邊的平方的和,換成求平行四邊形對(duì)角線的最大值,問(wèn)題就得以解決.10.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,以AB為直徑的半圓O交AC于點(diǎn)D,點(diǎn)E是SKIPIF1<0上不與點(diǎn)B,D重合的任意一點(diǎn),連接AE交BD于點(diǎn)F,連接BE并延長(zhǎng)交AC于點(diǎn)G.(1)求證:SKIPIF1<0;(2)填空:①若SKIPIF1<0,且點(diǎn)E是SKIPIF1<0的中點(diǎn),則DF的長(zhǎng)為;②取SKIPIF1<0的中點(diǎn)H,當(dāng)SKIPIF1<0的度數(shù)為時(shí),四邊形OBEH為菱形.【答案】(1)見(jiàn)解析(2)①SKIPIF1<0②30°【分析】(1)利用直徑所對(duì)的圓周角是直角,可得SKIPIF1<0,再應(yīng)用同角的余角相等可得SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0得證;(2)作SKIPIF1<0,應(yīng)用等弧所對(duì)的圓周角相等得SKIPIF1<0,再應(yīng)用角平分線性質(zhì)可得結(jié)論;由菱形的性質(zhì)可得SKIPIF1<0,結(jié)合三角函數(shù)特殊值可得SKIPIF1<0.【詳解】解:(1)證明:如圖1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0AB是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(2)①如圖2,過(guò)F作SKIPIF1<0于H,SKIPIF1<0點(diǎn)E是SKIPIF1<0的中點(diǎn),SKIPIF1<0SKI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年股權(quán)轉(zhuǎn)讓合同股權(quán)比例與轉(zhuǎn)讓價(jià)格
- 2024建筑水電工程合同書(shū)
- 2024年銷售中介服務(wù)條款正式版協(xié)議版B版
- 2025年度新能源發(fā)電項(xiàng)目投資與運(yùn)營(yíng)管理合同3篇
- 2024年項(xiàng)目股份轉(zhuǎn)移及合作意向合同一
- 2024年舞臺(tái)燈光維修保養(yǎng)協(xié)議版B版
- 2025年倉(cāng)儲(chǔ)物流安全管理規(guī)范執(zhí)行合同3篇
- 2024年高效農(nóng)業(yè)設(shè)備定制與供應(yīng)合同
- 2025年度食品鋪貨與餐飲行業(yè)合作合同3篇
- 職業(yè)學(xué)院學(xué)生外出活動(dòng)管理規(guī)定
- 冬春季呼吸道傳染病防控
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 2024-2025學(xué)年安徽省六安市金安區(qū)三上數(shù)學(xué)期末調(diào)研試題含解析
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之10:“5領(lǐng)導(dǎo)作用-5.4創(chuàng)新文化”(雷澤佳編制-2025B0)
- 【物 理】2024-2025學(xué)年八年級(jí)上冊(cè)物理寒假作業(yè)人教版
- 交通運(yùn)輸安全生產(chǎn)管理規(guī)范
- 2024年期貨居間業(yè)務(wù)代理合同范本2篇
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- 2024年計(jì)算機(jī)二級(jí)WPS考試題庫(kù)380題(含答案)
- 化妝品原料名稱對(duì)照及用途
- 雙梁門式起重機(jī)計(jì)算書(shū)
評(píng)論
0/150
提交評(píng)論