實驗十一酶切_第1頁
實驗十一酶切_第2頁
實驗十一酶切_第3頁
實驗十一酶切_第4頁
實驗十一酶切_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

實驗十一酶切第一頁,共十九頁,2022年,8月28日RestrictionEndonucleases:

AnOverviewRestrictionenzymeswerediscoveredabout30yearsagoduringinvestigationsintothephenomenonofhost-specificrestrictionandmodificationofbacterialviruses.Bacteriainitiallyresistinfectionsbynewviruses,andthis"restriction"ofviralgrowthstemmedfromendonucleaseswithinthecellsthatdestroyforeignDNAmolecules.Amongthefirstofthese"restrictionenzymes"tobepurifiedwereEcoR

IandEcoRIIfromEscherichiacoli,andHindIIandHindIIIfromHaemophilusinfluenzae.TheseenzymeswerefoundtocleaveDNAatspecificsites,generatingdiscrete,gene-sizefragmentsthatcouldbere-joinedinthelaboratory.Researcherswerequicktorecognizethatrestrictionenzymesprovidedthemwitharemarkablenewtoolforinvestigatinggeneorganization,functionandexpression.Astheuseofrestrictionenzymesspreadamongmolecularbiologistsinthelate1970’s,companiessuchasNewEnglandBiolabsbegantosearchformore.Exceptforcertainviruses,restrictionenzymeswerefoundonlywithinprokaryotes.Manythousandsofbacteriaandarchaehavenowbeenscreenedfortheirpresence.Analysisofsequencedprokaryoticgenomesindicatesthattheyarecommon--allfree-livingbacteriaandarchaeaappeartocodeforthem.Restrictionenzymesareexceedinglyvaried;theyrangeinsizefromthediminutivePvuII(157aminoacids)tothegiantCjeI(1250aminoacids)andbeyond.Amongover3,000activitiesthathavebeenpurifiedandcharacterized,morethan250differentsequence-specificitieshavebeendiscovered.Ofthese,over30%werediscoveredandcharacterizedatNewEnglandBiolabs.第二頁,共十九頁,2022年,8月28日Thesearchfornewspecificitiescontinues,bothbiochemically,bytheanalysisofcell-extracts,andcomputationally,bytheanalysisofsequencedgenomes.Althoughmostactivitiesencounteredtodayturnouttobeduplicates--isoschizomers--ofexistingspecificities,restrictionenzymeswithnewspecificitiesarefoundwithregularity.Beginningintheearly1980’s,NewEnglandBiolabsembarkedonaprogramtocloneandoverexpressthegenesforrestrictionenzymes.Cloningimprovesenzymepuritybyseparatingenzymesfromcontaminatingactivitiespresentinthesamecells.Italsoimprovesenzymeyieldsandgreatlysimplifiespurification,anditprovidesthegenesforsequencingandanalysis,andtheproteinsforx-raycrystallography.Restrictionenzymesprotectbacteriafrominfectionsbyviruses,anditisgenerallyacceptedthatthisistheirroleinnature.Theyfunctionasmicrobialimmunesystems.WhenastrainofE.colilackingarestrictionenzymeisinfectedwithavirus,mostvirusparticlescaninitiateasuccessfulinfection.Whenthesamestraincontainsarestrictionenzyme,however,theprobabilityofsuccessfulinfectionplummets.Thepresenceofadditionalenzymeshasamultiplicativeeffect;acellwithfourorfiveindependentrestrictionenzymescouldbevirtuallyimpregnable.第三頁,共十九頁,2022年,8月28日

Restrictionenzymesusuallyoccurincombinationwithoneortwomodificationenzymes(DNA-methyltransferases)thatprotectthecell’sownDNAfromcleavagebytherestrictionenzyme.ModificationenzymesrecognizethesameDNAsequenceastherestrictionenzymethattheyaccompany,butinsteadofcleavingthesequence,theymethylateoneofthebasesineachoftheDNAstrands.ThemethylgroupsprotrudeintothemajorgrooveofDNAatthebindingsiteandpreventtherestrictionenzymefromactinguponit.Together,arestrictionenzymeandits"cognate"modificationenzyme(s)formarestriction-modification(R-M)system.InsomeR-Msystemstherestrictionenzymeandthemodificationenzyme(s)areseparateproteinsthatactindependentlyofeachother.Inothersystems,thetwoactivitiesoccurasseparatesubunits,orasseparatedomains,ofalarger,combined,restriction-and-modificationenzyme.第四頁,共十九頁,2022年,8月28日Restrictionenzymesaretraditionallyclassifiedintothreetypesonthebasisofsubunitcomposition,cleavageposition,sequence-specificityandcofactor-requirements.However,aminoacidsequencinghasuncoveredextraordinaryvarietyamongrestrictionenzymesandrevealedthatatthemolecularleveltherearemanymorethanthreedifferentkinds.TypeIenzymesarecomplex,multisubunit,combinationrestriction-and-modificationenzymesthatcutDNAatrandomfarfromtheirrecognitionsequences.Originallythoughttoberare,wenowknowfromtheanalysisofsequencedgenomesthattheyarecommon.TypeIenzymesareofconsiderablebiochemicalinterestbuttheyhavelittlepracticalvaluesincetheydonotproducediscreterestrictionfragmentsordistinctgel-bandingpatterns.第五頁,共十九頁,2022年,8月28日TypeIIenzymescutDNAatdefinedpositionsclosetoorwithintheirrecognitionsequences.Theyproducediscreterestrictionfragmentsanddistinctgelbandingpatterns,andtheyaretheonlyclassusedinthelaboratoryforDNAanalysisandgenecloning.Ratherthenformingasinglefamilyofrelatedproteins,type

IIenzymesareacollectionofunrelatedproteinsofmanydifferentsorts.TypeIIenzymesfrequentlydiffersoutterlyinaminoacidsequencefromoneanother,andindeedfromeveryotherknownprotein,thattheylikelyaroseindependentlyinthecourseofevolutionratherthandivergingfromcommonancestors.ThemostcommontypeIIenzymesarethoselikeHha

I,HindIIIandNotIthatcleaveDNAwithintheirrecognitionsequences.Enzymesofthiskindaretheprincipleonesavailablecommercially.MostrecognizeDNAsequencesthataresymmetricbecausetheybindtoDNAashomodimers,butafew,(e.g.,BbvCI:CCTCAGC)recognizeasymmetricDNAsequencesbecausetheybindasheterodimers.Someenzymesrecognizecontinuoussequences(e.g.,

EcoR

I:GAATTC)inwhichthetwohalf-sitesoftherecognitionsequenceareadjacent,whileothersrecognizediscontinuoussequences(e.g.,BglI:GCCNNNNNGGC)inwhichthehalf-sitesareseparated.Cleavageleavesa3′-hydroxylononesideofeachcutanda5′-phosphateontheother.TheyrequireonlymagnesiumforactivityandthecorrespondingmodificationenzymesrequireonlyS-adenosylmethionine.Theytendtobesmall,withsubunitsinthe200–350aminoacidrange.第六頁,共十九頁,2022年,8月28日ThenextmostcommontypeIIenzymes,usuallyreferredtoas‘typeIIs"arethoselikeFokIandAlwIthatcleaveoutsideoftheirrecognitionsequencetooneside.

Theseenzymesareintermediateinsize,400–650aminoacidsinlength,andtheyrecognizesequencesthatarecontinuousandasymmetric.Theycomprisetwodistinctdomains,oneforDNAbinding,theotherforDNAcleavage.TheyarethoughttobindtoDNAasmonomersforthemostpart,buttocleaveDNAcooperatively,throughdimerizationofthecleavagedomainsofadjacentenzymemolecules.Forthisreason,sometypeIIsenzymesaremuchmoreactiveonDNAmoleculesthatcontainmultiplerecognitionsites.ThethirdmajorkindoftypeIIenzyme,moreproperlyreferredtoas"typeIV"arelarge,combinationrestriction-and-modificationenzymes,850–1250aminoacidsinlength,inwhichthetwoenzymaticactivitiesresideinthesameproteinchain.Theseenzymescleaveoutsideoftheirrecognitionsequences;thosethatrecognizecontinuoussequences(e.g.,Eco57I:CTGAAG)cleaveonjustoneside;thosethatrecognizediscontinuoussequences(e.g.,BcgI:CGANNNNNNTGC)cleaveonbothsidesreleasingasmallfragmentcontainingtherecognitionsequence.Theaminoacidsequencesoftheseenzymesarevariedbuttheirorganizationareconsistent.TheycompriseanN-terminalDNA-cleavagedomainjoinedtoaDNA-modificationdomainandoneortwoDNAsequence-specificitydomainsformingtheC-terminus,orpresentasaseparatesubunit.Whentheseenzymesbindtotheirsubstrates,theyswitchintoeitherrestrictionmodetocleavetheDNA,ormodificationmodetomethylateit.第七頁,共十九頁,2022年,8月28日TypeIIIenzymesTypeIIIenzymesarealsolargecombinationrestriction-and-modificationenzymes.TheycleaveoutsideoftheirrecognitionsequencesandrequiretwosuchsequencesinoppositeorientationswithinthesameDNAmoleculetoaccomplishcleavage;theyrarelygivecompletedigests.Nolaboratoryuseshavebeendevisedforthem,andnoneareavailablecommercially.

第八頁,共十九頁,2022年,8月28日一.實驗?zāi)康募氨尘?/p>

核酸限制性內(nèi)切酶是一類能識別雙鏈DNA中特定堿基順序的核酸水解酶,這些酶都是從原核生物中發(fā)現(xiàn),它們的功能猶似高等功物的免疫系統(tǒng),用于抗擊外來DNA的侵襲。限制性內(nèi)切酶以內(nèi)切方式水解核酸鏈中的磷酸二酯鍵,產(chǎn)生的DNA片段5’端為P,3’端為OH。第九頁,共十九頁,2022年,8月28日限制酶的類型根據(jù)限制酶的識別切割特性,催化條件及是否具有修飾酶活性可分為Ⅰ、Ⅱ、Ⅲ型三大類。Ⅰ類和Ⅲ類限制性內(nèi)切酶,在同一蛋白分子中兼有甲基化作用及依賴ATP的限制性內(nèi)切酶活性。Ⅰ類限制性內(nèi)切酶結(jié)合于特定識別位點,且沒有特定的切割位點,酶對其識別位點進行隨機切割,很難形成穩(wěn)定的特異性切割末端。Ⅲ類限制性內(nèi)切酶在識別位點上切割,然后從底物上解離下來。故Ⅰ類和Ⅲ類酶在基因工程中基本不用。第十頁,共十九頁,2022年,8月28日Ⅱ型酶Ⅱ型酶就是通常指的DNA限制性內(nèi)切酶.它們能識別雙鏈DNA的特異順序,并在這個順序內(nèi)進行切割,產(chǎn)生特異的DNA片段;Ⅱ型酶分子量較小,僅需Mg2+作為催化反應(yīng)的輔助因子,識別順序一般為4~6個堿基對的反轉(zhuǎn)重復(fù)順序;Ⅱ型內(nèi)切酶切割雙鏈DNA產(chǎn)生3種不同的切口--5’端突出;3’端突出和平末端。正是得益于限制性的內(nèi)切酶的發(fā)現(xiàn)和應(yīng)用,才使得人們能在體外有目的地對遺傳物質(zhì)DNA進行改造,從而極大地推動了分子生物學(xué)的興旺和發(fā)展。第十一頁,共十九頁,2022年,8月28日酶切反應(yīng)中應(yīng)注意以下幾個問題:1.內(nèi)切酶:不應(yīng)混有其它雜蛋白特別是其它內(nèi)切酶或外切酶的污染;注意內(nèi)切酶的識別位點及形成的粘性末端;內(nèi)切酶的用量根據(jù)內(nèi)切酶單位和DNA用量而定,通常1u指在適當(dāng)條件下,1小時內(nèi)完全酶解1ug特定DNA底物所需要的限制性內(nèi)切酶量,使用中一般以1ugDNA對2-3u酶短時間為宜。同時內(nèi)切酶體積不能超過反應(yīng)體系10%,因內(nèi)切酶中含50%甘油,體系中甘油超過5%會抑制內(nèi)切酶活力;內(nèi)切酶操作應(yīng)在低溫下進行(冰上);使用時防止操作中對內(nèi)切酶的污染。第十二頁,共十九頁,2022年,8月28日2.DNA:作為內(nèi)切酶底物,DNA應(yīng)該具備一定的純度,其溶液中不能含酚、氯仿、乙醚、SDS、EDTA、高

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論