版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年山西省大同市普通高校對口單招高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.()。A.3B.2C.1D.0
2.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關
3.
4.
5.
6.
7.
8.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
9.
10.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx11.()。A.
B.
C.
D.
12.A.A.5B.3C.-3D.-513.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
14.設f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)15.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
16.設函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
17.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件18.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
19.
20.
二、填空題(20題)21.
22.23.
24.
25.
26.27.
28.過點M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。
29.
30.
31.
32.33.
34.
35.
36.設y=3x,則y"=_________。
37.
38.
39.
40.直線的方向向量為________。三、計算題(20題)41.求微分方程的通解.42.
43.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.44.
45.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
46.
47.
48.49.將f(x)=e-2X展開為x的冪級數(shù).
50.求微分方程y"-4y'+4y=e-2x的通解.
51.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
52.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.53.證明:
54.
55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.59.求曲線在點(1,3)處的切線方程.60.當x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)61.
62.
63.
64.
65.
66.
67.68.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉一周所得旋轉體的體積。
69.
70.
五、高等數(shù)學(0題)71.已知函數(shù)f(x)在點x0處可導,則
=()。
A.一2f"(x0)
B.2f"(一x0)
C.2f"(x0)
D.不存在
六、解答題(0題)72.
參考答案
1.A
2.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應選A。
3.C
4.D
5.A
6.D
7.A
8.D本題考查的知識點為原函數(shù)的概念、復合函數(shù)求導.
9.C
10.D
11.C
12.Cf(x)為分式,當x=-3時,分式的分母為零,f(x)沒有定義,因此
x=-3為f(x)的間斷點,故選C。
13.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
14.D解析:
15.D
16.D本題考查的知識點為偏導數(shù)的運算。由z=sin(xy2),知可知應選D。
17.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。
18.B
19.C解析:
20.A
21.[e+∞)(注:如果寫成x≥e或(e+∞)或x>e都可以)。[e,+∞)(注:如果寫成x≥e或(e,+∞)或x>e都可以)。解析:
22.x
23.1本題考查了收斂半徑的知識點。
24.y+3x2+x
25.11解析:
26.27.本題考查的知識點為極限運算.
28.
29.
30.
31.32.3(x-1)-(y+2)+z=0(或3x-y+z=5).
本題考查的知識點為平面與直線的方程.
由題設條件可知應該利用點法式方程來確定所求平面方程.
所給直線z的方向向量s=(3,-1,1).若所求平面π垂直于直線1,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點法式方程可知
3(x-1)-[y-(-2)]+(z-0)=0,
即3(x-1)-(y+2)+z=0
為所求平面方程.
或寫為3x-y+z-5=0.
上述兩個結果都正確,前者3(x-1)-(y+2)+z=0稱為平面的點法式方程,而后者3x-y+z-5=0
稱為平面的-般式方程.33.5.
本題考查的知識點為二元函數(shù)的偏導數(shù).
解法1
解法2
34.22解析:
35.36.3e3x
37.
本題考查的知識點為二元函數(shù)的偏導數(shù).
38.
本題考查的知識點為二元函數(shù)的偏導數(shù)計算.
39.y=-x+140.直線l的方向向量為
41.
42.
則
43.由二重積分物理意義知
44.由一階線性微分方程通解公式有
45.
46.
47.
48.
49.
50.解:原方程對應的齊次方程為y"-4y'+4y=0,
51.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
52.
53.
54.55.函數(shù)的定義域為
注意
56.
57.
58.
列表:
說明
59.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或寫為2x+y-5=0.
如果函數(shù)y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高新技術產(chǎn)品銷售合同管理規(guī)定2篇
- 二零二五年度游艇購置及保養(yǎng)維修協(xié)議3篇
- 2025版智能節(jié)能鋁合金門窗研發(fā)與推廣合作協(xié)議4篇
- 2025年項目抵押貸款合同范本解讀與實操6篇
- 2025版醫(yī)療器械融資委托擔保合同樣本3篇
- 二零二五年度貨車貨運保險與物流行業(yè)信用評估合同
- 2025年度智能機器人銷售與技術支持協(xié)議3篇
- 2025版新型綠色建筑材料供應及施工合同4篇
- 2025版中英外教專業(yè)能力培訓與雇傭合同3篇
- 個體資金借入合同:固定期限還款合同版
- 圖像識別領域自適應技術-洞察分析
- 個體戶店鋪租賃合同
- 新概念英語第二冊考評試卷含答案(第49-56課)
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- 保安部工作計劃
- 2023痛風診療規(guī)范(完整版)
- (完整word版)企業(yè)對賬函模板
- 土力學與地基基礎(課件)
- 主要負責人重大隱患帶隊檢查表
- 魯濱遜漂流記人物形象分析
- 危險廢物貯存?zhèn)}庫建設標準
評論
0/150
提交評論