版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
StructuralapplicationsofFiberReinforcedConcretesimulatedwithDIANAGiuseppe
Tiberti,
Giovanni
PlizzariPhD-DICATAM-DepartmentofCivil,Environmental,ArchitecturalEngineeringandMathematics,UniversityofBresciaUniversityofBrescia,ITALYgiuseppe.tiberti@unibs.itgiovanni.plizzari@unibs.itResearch
group
Several
research
works
are
on-going
attheUniversityof
Brescia
The
research
groupledbyprof.G.A.Plizzariisdevelopinga
noticeableresearch
regarding
innovativecementitiousmaterials
for
usein
structuralapplications
The
aforementioned
research
groupis
currentlycomposed
by:-
GiovanniPlizzari,Full
professor
ofstructuralengineering;-
FaustoMinelli,PhD,
Assistantprofessorof
structural
engineering;-
GiuseppeTiberti,PhD,
Assistant
professor
of
structural
engineering
Furthermore,
several
PhD
Students
as
well
as
PhD
Fellowsareinvolvedin
theoverallactivitiesofthegroup
Itis
worthwhilenoticingthattheresearchdeveloped
concerning
FiberReinforced
Concretes
(FRCs)in
thelasttwo
decades
byprof.Plizzariandhisgroup
was
an
importantcontributionto
specificrulesand
recommendationscurrently
presentin
the
section
devotedtodesign
of
FRCstructuresin
thenew
Model
Code
20102/50Research
groupContentsAmongtheinnovativematerials
underinvestigationthispresentationwillbefocused
on
FRCPart
1:
Introduction
on
FRCPart
2:
Examples
concerningtheresearch
on-going
attheUniversity
ofBrescia
on
FRC
by
means
of
experimentalinvestigationas
well
as
by
meansof
numerical
simulationcarriedout
by
means
of
DIANAPart
3:
Main
concepts
regarding
the
necessary
procedure
for
includingfibrousreinforcementcontribution
inthecrack
modelscurrentlyimplementedinDIANAPart
4:
Numerical
simulations
of
precast
tunnellining
underthesevere
loadsapplied
by
Tunnel
Boring
Machines
(TBMs)duringtheexcavation
process3/50ContentsFiber
Reinforced
ConcreteMany
structural
and
non
structuralelements
are
nowadays
designedand
reinforced
with
FRC,
asPARTIAL
or
TOTAL
substitution
ofconventional
reinforcement.4/50Part
1:
Introduction
to
FRCTypes
of
FibersAluminium
fibersGlass
fibersSteel
fibersPolypropylen
fibers5/50Part
1:
Introduction
to
FRCFiber
Reinforced
Concrete
EffectsFiberContentVf
1%
(w)res?
Durability?
Minimum
Reinforcement
(N,
Me
V)?
Crack
Control?
Fatigue?
Enhancedtensionstiffeningandlimitationofdeflectionat
SLS?Shrinkage(restrainedbasically)?Post-Crackingtoughness?
D
Regions
(deep
beams,spalling,bursting,splitting)6/50Part
1:
Introduction
to
FRCStrain
Softening-Strain
HardeningPPPPPP(a)(b)Small
fibre
volume
fraction
(0.2
–
2%):
the
FRC
shows
a
softening
behaviour,but
it
is
characterised
by
a
residual
strength
as
well
as
a
greater
toughness.Higher
fibre
volume
fraction
(2
–
8%):
the
behaviour
can
become
hardening,duetothepresenceofmultiplecracking.NotchedSpecimensarenotgoodforstrainhardeningmaterials.7/50Part
1:
Introduction
to
FRCFrom
material
to
structural
behaviorNaaman,
A.E.
and
Reinhardt,
H.
(eds),
High
Performance
fiber
reinforced
cement
composites–HPFRCC4
RILEMProceedings,
PRO30,
Rilem
Publications
S.A.R.L.,
Bagneux,
France,
2003.8/50Part
1:
Introduction
to
FRCStructural
analysis:
RC
vs.
FRCRCFRCIn
RC
structuresthe
response
can
be
accepted
aslinearuptoyieldingofthe
reinforcementIn
FRC
structurestheresponseismarkedly
non
linearPerforming
Non
Linear
analysesisnecessary9/50Part
1:
Introduction
to
FRCFRC
Modelling
under
tensionBefore
CrackingAfter
Crackingfctmatrix
+
fibresPPEofibresmatrix1wcrFractureenergyin
FRCelementsismainly
provided
by
fiberspull-out10/50Part
1:
Introduction
to
FRCFRC
typical
fracture
tests?
Generallya
performance
approachis
chosen:thematerial
hastobe
tested
as
composite,
becausethemechanical
responsecannot
be
properlyidentifiedby
knowingthemix
design
andthemechanicalcharacteristicsof
each
componentUNIAXIAL
TENSION
TESTBENDING
TEST11/50Part
1:
Introduction
to
FRCCMOD-controlled
testsSeveral
standards,
concerning
the
characterization
of
FRC,
are
based
onCMOD-controlled
tests
on
notched
beams
loaded
with
a
three
(3PBT)
orfour
point
test
(4PBT).CMOD
is
the
Crack
Mouth
Opening
Displacement.
Basically,
CMOD
is
themouth
crack-opening
of
the
notchwhichincreases
during
thetest.bCTODCTODDepthofthenotchGAUGECMODCMODLGAUGECTOD
is
the
Crack
Tip
Opening
Displacement.
Basically,
CTOD
is
thecrack-opening
at
the
notchtip.12/50Part
1:
Introduction
to
FRCFRC
classification
(3PBT)EN
14651hsp
=
125
mmb
=
150
mm3Fj
lf
R,jLinearstressdistribution,2bh2Nominalresidualpost-crackingstressessp13/50Part
1:
Introduction
to
FRCAnalysis
of
a
masonry
wall
with
SFRM
coating:effects
of
coating
shrinkage
on
the
wall
capacityFree
bodydiagramSpecimengeometryandloadset-up3-D
mesh
(Diana
9.4.4)VVV/2Hbeam
elements
forsimulatingsteelconnectors
betweencoating
and
masonrybrick
elements
forinterface
elements
forsimulating
the
non-linearbehavior
of
masonry-to-coating
interfacesimulatingmasonry
andSteel
Fiber
ReinforcedMortar
coating14/50Part
2:
Examples
of
FRC
structural
applications
investigatedSimulation
of
a
Steel
Fiber
Reinforced
Concreteunderground
water
tank3-D
model
(Diana
9.3)Structureoverviewandloadset-up?
tankSteel
60mmpipeTypicalloadingconditionsbrickelementsGroundpressureontheoutersurfaceOnenodetranslationelements15/50Part
2:
Examples
of
FRC
structural
applications
investigatedSteel
Fiber
Reinforced
Concrete
thin
slabs3-D
modelSimplysupportedslabgeometryandloadset-upFourpointbendingtestFracture
behavior
ofSFRSCC
modeled
bythe
“total
strainrotating
crack
model”(smeared
crackNo-tension
springelements
formodeling
supportsapproach)16/50Part
2:
Examples
of
FRC
structural
applications
investigatedSlabs
on
grade
under
shrinkage
effectNumerical
model:3D
numerical
model,
because
of
symmetry,
one-quarter
of
slab
was
simulated.Numerical
results,
typical
slab
response
under
shrinkage
effect:Distributionofverticaldisplacement
[mm]
at
first
crack,8.5
days:curlingeffect.17/50Part
2:
Examples
of
FRC
structural
applications
investigatedSteel
Fiber
Reinforced
Concrete
pipesTypicalgeometryandloadset-up2-D
model2-D8-nodeselements18/50Part
2:
Examples
of
FRC
structural
applications
investigatedConventional
excavated
tunnel
with
cast
in
placeFRC
tunnel
liningMesh
refinementBenchCold
jointInvert19/50Part
2:
Examples
of
FRC
structural
applications
investigatedPrecast
FRC
tunnel
lining
elements20/50Part
2:
Examples
of
FRC
structural
applications
investigatedIncluding
fibrous
reinforcement
contribution
in
NLFEA
The
main
advantage
of
FRCwithrespectto
a
traditionalplainconcreteisthe
noticeable
improvement
of
the
post-cracking
response
because
offibrousreinforcementcontribution
In
orderto
includethiscontributionseveral
crack
models
arecurrentlyimplementedin
DIANA:-multi-directionalfixedcrack
model;-totalstrainfixedcrack
model;-totalstrainrotating
crack
Asa
general
recommendation,itis
always
better,ifitis
possible,to
verifyandvalidatethenumerical
modelwithexperimentaltests
available
inliteratureonstructuralelementssimilarof
that
underinvestigation21/50Part
3:
Main
concepts
modelling
FRC
with
DIANAPost-cracking
contribution
in
NLFEA
The
post-crackinglaw
forusein
numericalanalysesis
generallyobtainedby
means
of
the
inverse-analysis
method:DiscretecrackapproachSmearedcrackapproachfctfct+Ecs1ww1Post-cracking
law,Part
3:
Main
concepts
modelling
FRC
with
DIANAwcCTODmPre-cracking
law,
--w22/50Post-cracking
contribution
in
NLFEA
Typicalresultsobtained
by
means
ofa
discrete
and
smeared
approach
byusingDIANA:765432103PBT-EN14651-SFRC0.25MExperimentalMeanexperimentalSFRC0.25MDiscreteapproachSFRC0.25MSmearedapproach00.511.522.533.5CTODm
[mm]23/50Part
3:
Main
concepts
modelling
FRC
with
DIANANon-linear
-
numerical
analysesSeveralexperimentaltestsonSFRCspecimenswerenumericallysimulatedinordertocheckthepreviouslymentionedissuesByusingDIANAandthetotalstraincrackmodelthefollowingloadingconditionsweresuccessfullysimulated(goodagreement)4PBTsSplittingtestsFlexuralandsplittingtestsonfull-scalesegmentswith/withoutcurvaturerespectively109NumericalCrackPatterns876LVDT2LVDT25ExperimentalCrackPatterns43SFRC50/0,75-Vf=0,51%:FEAExperimental21000,20,40,60,811,2ε,
LVDT[‰]24/50Part
3:
Main
concepts
modelling
FRC
with
DIANAMain
advantages
of
FRC
precast
tunnelsegments
Enhanced
toughness
Smallercrackopening
crackpatternmoredistributed
(durability)
Higherresistancetoimpactloadingand
improvefatigueresistance25/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMain
advantages
of
FRC
precast
tunnelsegments
No
detachment
of
crackedconcreteblocksin
tunnels
Fibresrepresenta
reinforcement
spread
out
everywhereinto
thelining(includingconcretecover)
The
presence
offiberreinforcementin
theconcretematrixwouldallow
timereductionin
fabrication,handlingandplacingofthecurvedrebars
Fibrereinforcement
cansubstitutereinforcementalongthetunnel(secondary
reinforcement)thatmay
be
usedforstressredistribution26/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMain
advantages
of
FRC
precast
tunnelsegments
Improvedindustrialprocess
No
more
storage
areasforreinforcement27/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseFRC
precast
tunnel
segments
Opportunitiesoffer
by
FRC
asa
reinforcementforFRCprecast
tunnelsegmentsNon
Linear
NumericalSimulationsdeveloped
by
means
of
DIANA
Study
of
the
global
and
local
tunnelliningbehaviour28/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseThrust
Phase
–
Introduction
The
precast
assembledringshould
guaranteethenecessary
longitudinalsupportforexcavation
processmadewithTBMShieldSegmentsringExcavingdirectionHydraulicJacksCutterHead
Differentapplicationmethods
ofthehydraulic
jacks
accordingto
differenttypical
configurations:
french,
japanese,
etc.29/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseBarcelona
Metro
–
Line
930/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseGeometrical
characteristicThickness
ofthe
ring
s=350
mmDepth
oftheringd=1800
mm7
segments+
1
key
segmentUniversal
tapered
segmentsLine
9,
double
deckconfiguration31/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseDamaged
segments
during
TBM
operationsBarcelona
Metro
Line
9
During
theconstruction
oftheBarcelona
Metro
Line
9,spallinglocalizedcracks
appear:probably
due
eccentricload(relativepositionbetweenjacksand
tunnelsegment)NicolaDellaValle,2005
Bending
cracks
appear:
probably
dueto
no-smooth
supportin
thering
jointNicolaDellaValle,200532/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseMaterials
adopted
Strength
class
ofthecementitious
matrix
ofallspecimens:
C50/60
Mechanical
properties
of
concrete:Constitutivelawforconcreteundercompression:-Ec=37000MPa-
fct=4.10MPa-
fc,cube=64.1MPa706050403020100EuroCode2ThorenfeldtParabola
Thefollowing
type
offiberhas
been
adopted:00,0005
0,001
0,0015
0,002
0,0025
0,003
0,0035
0,004
0,0045
0,005CompressivestrainShapehooked1100SteelFiberUltimate
tensile
strength[MPa]DosageModulus
of
elasticity
[MPa]Cross
SectionLength
[mm]Diameter
[mm]Aspect
Ratio210000circular500,756725/35/45kg/m333/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseDetermination
of
fracture
laws
4PointBendingTestson
notched
beams,
UNI
11039Determinationoffracturebilinearlaws,inverseanalysismethod.Numericalsimulationsof4PBTMesh2DPlanestress,DiscreteFractureWirand
FF1
-
45
-
C50/60
-
Vf=0,57%8,07,06,05,04,03,02,01,00,0fcts1Gffctw1wcwExperimentalFEADIANASmeareds1Gf0,00,10,20,3w1wwcCTODm
[mm]34/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseNumerical
model
adopted
Normalloading
condition:idealpositioningofhydraulicjacks
and
bearingpads:Springelements,SP1TR,no-tension,positionedonthe4bearingpadsurfaces.SupportoftheringjointuniformTwopairsofactuatorsactingonsteelplates:totalserviceloadapproximately12MNSpringelements,no-tension,actingintangentialdirectioninordertosimulatethepresenceofadjacentsegments35/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Thrust
jack
phase
Thefollowingreinforcement
combinations
were
adopted:2chords350mm350mm50/1,0-Vf=0,57%45kg/m350/0,75-Vf=0,32%25kg/m3Stiirups6@200mm14=0,22%RCO+50/0,75-Vf=0,32%71kg/m3RC97kg/m3RC+50/0,75-Vf=0,32%122kg/m336/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
results
Normal
loadingcondition(ideal
placement
of
supports
andjacks):Normal
loading
condition353025201510532,521,5150/1,0
-
Vf=0,57%50/0,75-
Vf=0,32%RCRC+
50/0,75-
Vf=0,32%RCO
+
50/0,75
-
Vf=0,32%0,5000,000,501,001,502,002,503,00Splitting
cracksAverage
displacement
under
the
loading
surfaces
[mm]Spalling
cracks37/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
resultsNormal
loading
condition35302520151053radial2,5z,
longitudinal
tunnel
axis2Point
3Point
2Point
1115mm50/1,0-
Vf=0,57%
-
Point150/0,75-
Vf=0,32%
-
Point1RC-
Point11,51tangentialRC+
50/0,75-
Vf=0,32%
-
Point1RCO+
50/0,75-
Vf=0,32%
-
Point10,50→
Schemeofthepointsofthemeasurementusedfor00,000,200,400,600,801,001,20
studyingthesplittingphenomenaunderthethrustRelative
displacement
inradial
direction
under
the
thrust
jacks
[mm]Normal
loading
conditionjacks.353025201510532,52900
mm50/1,0-
Vf=0,57%50/0,75-Vf=0,32%RC1,5→
Schemeofthebaseofmeasurementadoptedforestimatingthewidthofspalling
cracks;1RC+
50/0,75-
Vf=0,32%RCO+
50/0,75-Vf=0,32%0,5000,000,501,001,502,002,50Relative
displacement
in
the
region
between
the
thrust
jacks
[mm]Part
4:
Numerical
simulations
of
TBM
thrust
phaseLinea
9
–
Barcelona
–
Numerical
results→
Lineofinvestigationsadoptedundertheloadingareasofthethrustjacks:→
Interpretationofthelocalbehaviourundertheloadingareas:are-distributiontakeplaceinanareaofabout550mmwhichcorrespondstoabout1,6timesthethicknessoftheliningNormal
loading
condition
-
Line
01Normal
loading
condition
-
Line
015,00,010,05,00200400600800100012001400160018000,0020040060080010001200140016001800-5,0dh=350mm-5,0d550-600mm-10,0-15,0-20,02,21S.Load2,58S.Load2,64S.Load-10,0-15,0-20,01,96S.Load2,09S.LoadDistance
[mm]Distance
[mm]39/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseCheck
of
mesh
refinementMeshrefinement(Coarse
mesh)FIRST
CRACK(Refined
mesh)FIRST
CRACKSERVICE
LOAD1,5*SERVICE
LOAD2*SERVICE
LOADSERVICE
LOAD1,5*SERVICE
LOAD2*SERVICE
LOAD40/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseIrregularities
A
number
of
irregularities
can
occurin
practice
during
the
thrust
jack
phase1)
thrust
jacks
may
be
not
exactly
on
place2)ringjointmay
not
be
plane1)
thrust
jacks
may
be
not
exactly
on
place:Inside
tunnel-
Eccentricityofthehydraulicjacks-
InclinationofthehydraulicjacksEccentricityOutside
tunnelInside
tunnelInclinationOutside
tunnel41/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseIrregularitiesOutwardeccentricityInwardeccentricity42/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseInfluence
of
irregularities2)ring
jointmay
not
be
in
plane:Normalloadingcondition;segmentperfectlyplacedNon-smoothsupportsintheringjointCombinationoftheFrenchandJapanesejackconfiguration
Numericalresults
of
aneccentric
load
are
presented
hereinincomparisonwithnormalloadingcondition43/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricplacement
of
thrustjackin
radialdirection:willincrease
thespallingstresses
and
can
damagethesegment-EccentricplacementhasbeenmodeledinFEanalysisasatriangularpressuredistributionontheloadingsurface-Consequently,aneccentricityof37.3mmhasbeenappliedInsidetunnelInsidetunnelOutside
tunnelOutside
tunnel44/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricityappliedoutward:Becauseoftheeccentricity,thesegmenttiltsoutwardprovidingano-smoothsupportAbendingmomentoccursSplitting
andspallingstressesinitiate
at
an
earlierloadlevel.45/50Part
4:
Numerical
simulations
of
TBM
thrust
phaseEccentric
placement
of
thrust
jack
Eccentricity
appliedoutward:Eccentricityoutside302520151052,52Normal
l.condition-Fiberreinforcementcannotlocallycompetewithtraditionalrebarsconcentratedinthechords(proposedsolution)1,5150/1,0-Vf=0,57%50/0,75-Vf=0,32%RCEccentricityoutside2520,5RC+50/0,75-Vf=0,32%RCO+50/0,75-Vf=0,32%2015001,50,000,501,001,502,002,503,00Average
displacement
under
the
load
surfaces
[mm]-
Reductionofthes.f.withrespecttothe1normalloadcond.;1050/1,0-Vf=0,57%50/0,75-Vf=0,32%-NoticeableincrementofthecrackpatternBetweentheloadingareas(thrustjacks);0,550RCRC+50/0,75-Vf=0,32%RCO+
50/1,0-Vf=0,32%06,00-1,000,001,002,003,004,005,00Relative
displacement
in
the
region
between
the
thr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漁業(yè)可持續(xù)發(fā)展模式研究-洞察分析
- 碳捕集效率提升研究-洞察分析
- 藥物藥效學評價-洞察分析
- 土壤微生物生態(tài)網(wǎng)絡構(gòu)建-洞察分析
- 新形勢下智慧酒店行業(yè)轉(zhuǎn)型升級戰(zhàn)略制定與實施研究報告
- 2024年項目安全培訓考試題帶答案下載
- 2023-2024年企業(yè)主要負責人安全培訓考試題附完整答案【有一套】
- 2024年安全管理人員安全教育培訓試題含答案(培優(yōu)B卷)
- 虛擬現(xiàn)實在職業(yè)教育中的應用-洞察分析
- 2023-2024年企業(yè)主要負責人安全培訓考試題及參考答案【完整版】
- 暖通工程合同
- 生產(chǎn)型企業(yè)規(guī)章管理制度(3篇)
- 鋼結(jié)構(gòu)之樓承板施工方案流程
- 2024年營銷部工作人員安全生產(chǎn)責任制(2篇)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之3:4組織環(huán)境-4.1理解組織及其環(huán)境(雷澤佳編制-2025B0)
- 2024-2030年中國管道檢測工程行業(yè)前景分析發(fā)展規(guī)劃研究報告
- 新的護理交班模式
- 2024年安徽省高校分類對口招生考試數(shù)學試卷真題
- 2024電影數(shù)字節(jié)目管理中心招聘歷年高頻難、易錯點練習500題附帶答案詳解
- 棋牌室消防應急預案
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之22:“8運行-8.2 創(chuàng)新行動”解讀和應用指導材料(雷澤佳編制-2024)
評論
0/150
提交評論