版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年甘肅省平?jīng)鍪衅胀ǜ咝趩握懈叩葦?shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.A.
B.
C.
D.
2.
3.
A.0
B.
C.1
D.
4.
A.
B.
C.
D.
5.下列反常積分收斂的是()。
A.
B.
C.
D.
6.
A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
7.
8.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
9.
10.
11.下列命題不正確的是()。
A.兩個無窮大量之和仍為無窮大量
B.上萬個無窮小量之和仍為無窮小量
C.兩個無窮大量之積仍為無窮大量
D.兩個有界變量之和仍為有界變量
12.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動,輪緣上纏有不可伸長的細繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時,輪緣上M點的速度、加速度和物體A的速度、加速度計算不正確的是()。
A.M點的速度為vM=0.36m/s
B.M點的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
13.()。A.
B.
C.
D.
14.
15.
16.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點
17.
18.A.0B.1C.2D.4
19.
20.()。A.-2B.-1C.0D.2
二、填空題(20題)21.
22.
23.
24.________.
25.
26.
27.
28.
29.
30.
31.
32.
33.曲線y=x/2x-1的水平漸近線方程為__________。
34.
35.
36.
37.
38.
39.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
40.
三、計算題(20題)41.求曲線在點(1,3)處的切線方程.
42.
43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
44.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
47.證明:
48.將f(x)=e-2X展開為x的冪級數(shù).
49.
50.
51.
52.求微分方程的通解.
53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
57.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
59.
60.
四、解答題(10題)61.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點ξ使得f''(ξ)=0.
62.設(shè)y=sinx/x,求y'。
63.
64.
65.
66.
67.設(shè)函數(shù)y=sin(2x-1),求y'。
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
,則
=__________。
六、解答題(0題)72.
參考答案
1.B本題考查的知識點為偏導(dǎo)數(shù)運算.
由于z=tan(xy),因此
可知應(yīng)選B.
2.B
3.A
4.C本題考查的知識點為復(fù)合函數(shù)導(dǎo)數(shù)的運算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈式法則知
可知應(yīng)選C.
5.D
6.A
本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
7.B
8.C所給方程為可分離變量方程.
9.D
10.B
11.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無窮大。
12.B
13.A
14.D
15.C解析:
16.A
17.D
18.A本題考查了二重積分的知識點。
19.B
20.A
21.f(x)本題考查了導(dǎo)數(shù)的原函數(shù)的知識點。
22.
23.1.
本題考查的知識點為函數(shù)在一點處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
24.
25.
26.
本題考查了一元函數(shù)的導(dǎo)數(shù)的知識點
27.(00)
28.2
29.
30.R
31.1/2本題考查的知識點為極限的運算.
32.-ln|x-1|+C
33.y=1/2
34.
本題考查的知識點為初等函數(shù)的求導(dǎo)運算.
本題需利用導(dǎo)數(shù)的四則運算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認作sinx,事實上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
35.
36.
37.
38.
39.
本題考查的知識點為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點向式方程可知所求直線方程為
40.
41.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.
43.
44.
45.由二重積分物理意義知
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
47.
48.
49.由一階線性微分方程通解公式有
50.
51.
52.
53.
54.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
55.
56.
列表:
說明
57.由等價無窮小量的定義可知
58.函數(shù)的定義域為
注意
59.
則
60.
61.由題意知f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版離婚協(xié)議書模板定制服務(wù)合同3篇
- 專業(yè)培訓(xùn)服務(wù)協(xié)議模板2024年版版B版
- 2025年度家居裝飾用玻璃瓶定制銷售合同3篇
- 2024房產(chǎn)交易居間協(xié)議模板版A版
- 2025年廁所革命項目節(jié)能評估合同3篇
- 2024新能源電動汽車充電設(shè)施運營合同
- 2024幼兒園員工勞動合同與員工手冊融合指導(dǎo)3篇
- 2024年餐飲服務(wù)員聘用標準協(xié)議范本版
- 2024新媒體內(nèi)容版權(quán)保護與侵權(quán)責(zé)任協(xié)議2篇
- 票證防偽知識培訓(xùn)課件
- 2024年單位司機個人工作總結(jié)(6篇)
- 幼兒園幼教集團2025學(xué)年第二學(xué)期工作計劃
- 【9物(北師)期末】阜陽市臨泉縣2023-2024學(xué)年九年級上學(xué)期期末考試物理試題
- 2024年考研管理類綜合能力(199)真題及解析完整版
- 眼鏡銷售儀容儀表培訓(xùn)
- “兩高”發(fā)布《關(guān)于辦理拒不執(zhí)行判決、裁定刑事案件適用法律若干問題的解釋》(新舊對照表)
- 醫(yī)生或醫(yī)技崗位招聘面試題與參考回答(某大型國企)2024年
- 2024國考:公司座談提綱2024
- 2024年掃地機器人市場動態(tài)及行業(yè)發(fā)展分析
- 藝術(shù)學(xué)概論學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年區(qū)域牛羊肉獨家代理銷售協(xié)議
評論
0/150
提交評論