2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)_第1頁
2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)_第2頁
2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)_第3頁
2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)_第4頁
2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年安徽省六安市普通高校對口單招高等數(shù)學一自考真題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(20題)1.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

2.直線l與x軸平行,且與曲線y=x-ex相切,則切點的坐標是()A.A.(1,1)

B.(-1,1)

C.(0,-l)

D.(0,1)

3.設(shè)函數(shù)f(x)在x=1處可導,且,則f'(1)等于().A.A.1/2B.1/4C.-1/4D.-1/2

4.級數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散

5.A.

B.

C.

D.

6.A.2B.1C.1/2D.-1

7.

8.

9.A.1B.0C.2D.1/2

10.()。A.

B.

C.

D.

11.

12.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導,f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().

A.不存在零點

B.存在唯一零點

C.存在極大值點

D.存在極小值點

13.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)

14.

15.A.絕對收斂B.條件收斂C.發(fā)散D.無法確定斂散性

16.A.A.

B.

C.

D.

17.

18.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

19.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

20.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

二、填空題(20題)21.

22.

23.

24.過點M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。

25.

26.y"+8y=0的特征方程是________。

27.

28.

29.

30.設(shè)z=ln(x2+y),則全微分dz=__________。

31.

32.設(shè)區(qū)域D為y=x2,x=y2圍成的在第一象限內(nèi)的區(qū)域,則=______.

33.

34.

35.

36.曲線f(x)=x/x+2的鉛直漸近線方程為__________。

37.

38.

39.

40.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.

三、計算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

42.證明:

43.求微分方程的通解.

44.

45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

46.將f(x)=e-2X展開為x的冪級數(shù).

47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.

48.

49.

50.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

51.求曲線在點(1,3)處的切線方程.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

54.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

55.

56.

57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.

58.

59.

60.當x一0時f(x)與sin2x是等價無窮小量,則

四、解答題(10題)61.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.

62.求曲線y=x2在(0,1)內(nèi)的一條切線,使由該切線與x=0、x=1和y=x2所圍圖形的面積最小。

63.

64.

65.

66.

67.

68.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

69.

70.

五、高等數(shù)學(0題)71.求方程y一3y+2y=0的通解。

六、解答題(0題)72.

參考答案

1.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標分別代入所設(shè)平面方程,可得方程組

故選A.

2.C

3.B本題考查的知識點為可導性的定義.

當f(x)在x=1處可導時,由導數(shù)定義可得

可知f'(1)=1/4,故應(yīng)選B.

4.A

5.B

6.A本題考查了函數(shù)的導數(shù)的知識點。

7.D

8.B

9.C

10.D

11.A

12.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.

綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.

13.Dy=ex+e-x,則y'=ex-e-x,當x>0時,y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.

14.A

15.A

16.D

17.B

18.B本題考查的知識點為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。

19.D本題考查的知識點為偏導數(shù)的運算。由z=sin(xy2),知可知應(yīng)選D。

20.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。

21.

22.1

23.(03)(0,3)解析:

24.

25.1/2本題考查的知識點為極限的運算.

26.r2+8r=0本題考查的知識點為二階常系數(shù)線性微分方程特征方程的概念。y"+8y"=0的特征方程為r2+8r=0。

27.

28.1

29.

30.

31.

32.1/3;本題考查的知識點為二重積分的計算.

33.arctanx+C

34.

35.ex2

36.x=-2

37.

38.(-33)

39.

40.

本題考查的知識點為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).

由直線的點向式方程可知所求直線方程為

41.函數(shù)的定義域為

注意

42.

43.

44.

45.

46.

47.

列表:

說明

48.

49.

50.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%

51.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

53.由二重積分物理意義知

54.

55.

56.

57.

58.

59.由一階線性微分方程通解公式有

60.由等價無窮小量的定義可知

61.

62.

63.

64.

65.

66.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論