EViews計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告多重共線性的診斷與修正的討論_第1頁
EViews計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告多重共線性的診斷與修正的討論_第2頁
EViews計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告多重共線性的診斷與修正的討論_第3頁
EViews計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告多重共線性的診斷與修正的討論_第4頁
EViews計(jì)量經(jīng)濟(jì)學(xué)實(shí)驗(yàn)報(bào)告多重共線性的診斷與修正的討論_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試驗(yàn)題目多重共線性的診斷與修正一、試驗(yàn)?zāi)康呐c要求:要求目的:1、對(duì)多元線性回歸模型的多重共線性的診斷;2、對(duì)多元線性回歸模型的多重共線性的修正。二、試驗(yàn)內(nèi)容依據(jù)書上第四章引子“農(nóng)業(yè)的進(jìn)展反而會(huì)削減財(cái)政收入,197-2023業(yè)增加值等數(shù)據(jù),運(yùn)用EV三、試驗(yàn)過程:〔實(shí)踐過程、實(shí)踐全部參數(shù)與指標(biāo)、理論依據(jù)說明等)〔一)模型設(shè)定及其估量爭(zhēng)論“農(nóng)業(yè)的進(jìn)展反而會(huì)削減財(cái)政收入”這個(gè)問題。1設(shè)定如下形式的計(jì)量經(jīng)濟(jì)模型:Y=+ X+ X + X + X + X + X +1i 2 2 3 3 4 4 5 5 6 6 7 7 ii

為財(cái)政收入CS/億元;X2

為農(nóng)業(yè)增加值NZ/億元;X3

為工業(yè)增加值GZ/億元;X4

為建筑業(yè)增加值JZZ/億元;X 為總?cè)丝赥POP/X5

為最終消費(fèi)CUM/億元;X7

為受災(zāi)面積SZM/千公頃。圖1: 1978~2023年財(cái)政收入及其影響因素?cái)?shù)據(jù)年份 億元

農(nóng)業(yè)增工業(yè)增加GZ/億NZ/億元元

億元

總?cè)丝谌?/p>

最終消費(fèi)受災(zāi)面億元千公頃19781132。31027。51607138。2962592239。15079019791146。41270。21769。7143。8975422633.73937019801159.91371.61996.5195。5987053007。94452619811175.81559.52048。4207。11000723361。53979019821212.31777。42162。3220。71016543714.833130198313671978。42375。6270.61030084126。43471019841642。92316.12789316。71043574846。33189019852023。82564。43448.7417。91058515986。344365198621222788.73967525.71075076821.84714019872199.432334585。8665.81093007804.64209019882357.23865。45777。28101110269839.55087019892664。94265.9648479411270411164。24699119902937。150626858859.411433312090。53847419913149。485342。28087。11015。111582314091.95547219923483。375866。610284.5141511717117203。35133319934348.956963。8141882266。511851721899.94882919945218。19572。719480。72964。711985029242.25504319956242.212135824950。63728.812112136748。24582119967407.9914015429447。64387。412238943919。54698919978651.1414441932921。44621。612362648140.65342919989875。9514817.634018.44985。812476151588.250145199911444.081477035861。55172.112578655636。949981202313395.2314944.7400365522。31267436151654688202316386.0415781.343580.65931。712762766878.352215202318903641653747431.36465.512845371691.2471192023217152517381754945.57490.812922777449。55450620232639647214127652108694.312998887032。937106202331649.292242076912.910133813075696918.138818202338760.22404091310。9118511131448110595.3410912023513217828095107367.2140141132129128444648992EVY、XX、X、X、XX等數(shù)據(jù),承受這些數(shù)據(jù)對(duì)模型進(jìn)展OLS回歸。i 2 3 4 5 6 7(二)診斷多重共線性1EviewFile/Open/EVWorkfil—Excexls2、在EVlsycx2x3x4x5x6xEnteOLS:圖2: OLS回歸結(jié)果DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:07Sample:19782023Includedobservations:30Variable

Coefficient Std。Error

t—Statistic Prob.C—6646。6946454。156—1.0298320。3138X2-0.9706880.330409—2。9378410。0074X31.0846540。2285214。7463970.0001X4-2.7639282.076994—1。3307350。1963X50。0776130.0679741。1418080。2653X6-0.0471190。081509-0。5780840.5688X70.0075800。0350390.2163290。8306R-squared0。994565Meandependentvar10049.04AdjustedR-squared0.993147S.D.dependentvar12585。51S.E.ofregression1041.849Akaikeinfocriterion16.93634Sumsquaredresid24965329Schwarzcriterion17。26329Loglikelihood-247.0452F—statistic701.4747Durbin—Watsonstat2.167410Prob(F-statistic〕0.000000由此可見,該模型的可決系數(shù)為0.9950.993,模型擬和很好,F統(tǒng)計(jì)量為701。47,模型擬和很好,回歸方程整體上顯著。但是當(dāng)=0。05時(shí),t (nk)=t (23)=2。069,不僅X4、X5、X6、X7的系數(shù)t檢驗(yàn)不顯著,而且X2、X4、X6系/2 0.025數(shù)的符號(hào)與預(yù)期相反,這說明很可能存在嚴(yán)峻的多重共線性〔即除了農(nóng)業(yè)增加值X 、工業(yè)增加值X外,其他因素對(duì)2 3財(cái)政收入的影響都不顯著,且農(nóng)業(yè)增加值X、建筑業(yè)增加值X、最終消費(fèi)X的回歸系數(shù)還是負(fù)數(shù),這說明很可能存2 4 6在嚴(yán)峻的多重共線性.)3、計(jì)算各解釋變量的相關(guān)系數(shù):Workfile窗口,選擇X2、X3、X4、X5、X6、X7Quick”-GroupStatistics—Correlations-OK,消滅3:圖3:相關(guān)系數(shù)矩陣X2X3X4X5X6X70。0。0.9729806145982660623490.92797842940.988962619722619996587X2161479789067452466724650。0。0。0.9729806145998521808390.84390020659926412367112944371033X361471318868758178462150。0。0。982660623490.99852180830.86415213599960568434415464571840X4978993188128051159643530。0.92797842940.8439002065864152135920.88884805550.3877672648X506745687588051146979087870。0。0。0.988962619799264123671996056843440.88884805551858085X6246671784159646979115820。0。0。0.22619996580.129443710315464571840387767264801858085X772465362154353878715821由相關(guān)系數(shù)矩陣可以看出,各解釋變量相互之間的相關(guān)系數(shù)較高,特別是農(nóng)業(yè)增加值X2

、工業(yè)增加值X3

、建筑業(yè)增加值X4

、最終消費(fèi)之間X6

0.8以上。這說明模型存在著多重共線性。〔三〕修正多重共線性1Y對(duì)X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如以以下圖4:在EVlsycx2DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:49Sample:19782023Includedobservations:30Variable

Coefficient

Std.Error t-Statistic Prob。C—4086。5441463。091—2.7930900.0093X21.4541860。11723512.403980.0000R—squared0.846034Meandependentvar10049。04AdjustedR-squared0.840536S.Ddependentvar12585.51S。E.ofregression5025.770Akaikeinfocriterion19.94689SumsquaredresidLoglikelihood707E+08—297。2033SchwarzcriterionF—statistic20.04030153.8588Durbin-Watsonstat0。166951Prob(F-statistic〕0.000000依次如上推出X3、X4、X5、X6、X74:4。一元回歸估量結(jié)果變量X2X3X4X5X6X7參數(shù)估量值1.45418604268173186851082978903303540.111530t12.40398289016822.67733620602518.128950320338R20.84603409675670.94836405790410.9214940003651R20。8405360966408094652005640060.918690-0.0319322、其中,參與X的R2最大,以X為根底,順次參與其他變量逐步回歸。結(jié)果如以以下圖5:3 3DependentVariable:YLeastSquaresDate:10/13/10 Time:01:27Sample:19782023Includedobservations:30Variable

Coefficient

Std.Error

t-Statistic

Prob。C1976。086388。24135。0898410。0000—1.10533X290。105222—10.504860.0000X30.7219890。02887925.000560。0000R-squared0.993624Meandependentvar10049.04AdjustedR-squared0.993152S。Ddependentvar12585。51S.E.ofregression1041.474Akaikeinfocriterion16。82930Sumsquaredresid29286057Schwarzcriterion16。96942Loglikelihood-249.4395F—statistic2103.946Durbin-Watsonstat1.662637Prob(F—statistic〕0。000000依照上面,在順次參與X4、X5、X6、X7,進(jìn)展逐步回歸。綜合結(jié)果如以以下圖5:變量X2X3X4變量X2X3X4X5X6X7R2-1.1053390。721989X3X20.993152X3X40.990547X3X50。98301X3,X60。985025X3X70.970053〔—10.50486〕〔25.00056)1。65227—9。255748(11.46367〕0.514796〔-8.514941〕-0。261997〔26.29703〕0.910503〔-5。325453〕-0。386459〔11.18199〕0.430639(—5。984236〕—0.125579〔30。62427〕〔-2。099504)經(jīng)比較,參與X的方程R2=0.993152,改進(jìn)最大,但是X得系數(shù)為負(fù),這明顯不符題意。2 在X的根底上分別參與其他變量后覺察,XX2 3 2 4

,X ,X6

的系數(shù)都為負(fù),與預(yù)期估量違反。因此這些變量都會(huì)引起嚴(yán)峻的多重共線性,全部剔除,只保存X3DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:50Sample:19782023Includedobservations:30

。修正的回歸結(jié)果為:Variable

Coefficient

Std.Error t—Statistic Prob.C X3

570。5337 -1。8847080.014768 28。90168

0.06990.0000R—squaredAdjustedR—squaredS.E.ofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

0。967567 Meandependentvar0。966408 S。D。dependentvar2306。678 Akaikeinfocriterion149E+08 Schwarzcriterion-2738402 F-statistic0。292531 Prob〔F-statistic)

10049。0412585.5118。3893518.48276835.30740.000000Y?=-1075。289+ 0.426817Xi 3〔-1。884708〕〔28。90168〕R2=0。967567 R2=0.966408 F=835.3074這說明在其他因素不變的狀況下,工業(yè)增加值每增加10.426817億元。四、實(shí)踐結(jié)果報(bào)告:為爭(zhēng)論“農(nóng)業(yè)的進(jìn)展反而會(huì)削減財(cái)政收入”的問題,依據(jù)1978-2023年的財(cái)政收入,農(nóng)業(yè)增加值,工業(yè)增加值,建筑業(yè)增加值等數(shù)據(jù),運(yùn)用EV最終修正的回歸結(jié)果為:Y?=—1075.289+ 0.426817Xi 3(-1.884708〕〔28.90168〕R2=0.967567 R2=0.966408 F=835。307410.4268170.967567,較高,說明模型擬合優(yōu)度高;F835。3074,說明整個(gè)方程顯著;t28。90168,t統(tǒng)計(jì)量,t檢驗(yàn)顯著,符合題意.逐步回歸后的結(jié)果雖然實(shí)現(xiàn)了減輕多重共線性的目的,但反映農(nóng)業(yè)增加值,建筑業(yè)增加值的X2,X3等也一并從模型中剔除出去了,可能會(huì)帶來設(shè)定偏誤,這是在使用逐步回歸時(shí)需要留意的問題。附加:1Y對(duì)X2、X3、X4、X5、X6、X7的一元回歸,結(jié)果如下:lsycx2DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:49Sample:19782023Includedobservations:30Variable

Coefficient

Std.Error t—Statistic Prob?!?086。C 544

1463。091

0.0093X2 1.454186 0.117235 12.40398 0.0000R—squaredAdjustedR-squaredS。E.ofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

0.846034 Meandependentvar0。840536 S。D。dependentvar5025。770 Akaikeinfocriterion7.07E+08 Schwarzcriterion-297.2033 F-statistic0.166951 Prob〔F-statistic)

10049。0412585.5119。9468920。04030153.85880。000000lsycx3DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:50Sample:19782023Includedobservations:30VariableCX3

Coefficient0。426817

Std.Error0。014768

t-Statistic-1.884708

Prob。0.06990。0000R—squared0.967567Meandependentvar10049.04AdjustedR-squared0.966408S。D.dependentvar12585.51S。E.ofregression2306。678Akaikeinfocriterion18.38935Sumsquaredresid1.49E+08Schwarzcriterion18。48276—273。Loglikelihood8402F—statistic835。3074Durbin—Watsonstat0.292531Prob〔F-statistic)0。000000lsycx4DependentVariable:YLeastSquaresDate:10/12/10 Time:17:50Sample:19782023Includedobservations:30VariableCoefficientStd。Errort-StatisticProb.C—1235。177727.9896-1。6966950.1008X43。1868510.14053022。677330.0000R—squaredAdjustedR—squared

0。948364 Meandependentvar0.946520 S.D。dependentvar

10049。0412585.51S.EofregressionSumsquaredresidLoglikelihoodDurbin—Watsonstat

2910.486 Akaikeinfocriterion2.37E+08 Schwarzcriterion—280.8155 F-statistic0。215531 Prob〔F-statistic)

18。8543718。94778514。26140.000000lsycx5DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:17:51Sample:19782023Includedobservations:30VariableCoefficientStd.Errort-StatisticProb。C—86420。4215618。35-5。5332600。0000X50。8297890.1337076。2060250。0000R—squared0。579041Meandependentvar10049.04AdjustedR—squared0。564006S.D.dependentvar12585。51S。Eofregression8310.188Akaikeinfocriterion20。95269SumsquaredresidLoglikelihood1.93E+09—312.2904SchwarzcriterionF—statistic21.0461138.51474Durbin—Watsonstat0。132458Prob(F—statistic〕0.000001lsycx6DependentVariable:YLeastSquaresDate:10/12/10 Time:17:51Sample:19782023Includedobservations:30Variable

Coefficient Std。Error

t—Statistic Prob.C X6 0.330354

934.3495—2。1692810.018222

0.03870.0000R-squaredAdjustedR—squared

0。921494 Meandependentvar0。918690 S.D。dependentvar

10049。0412585。51S。E。ofregression 3588。750 Akaikeinfocriterion 19.27334SumsquaredresidLoglikelihood

361E+08 Schwarzcriterion—287.100 F—statistic

19。36675328。65890Durbin—Watsonstat 0。189127 Prob(F—statistic) 0.000000lsycx7DependentVariable:YMethod:LeastSquaresDate:10/12/10 Time:18:36Sample:19782023Includedobservations:30Variable

Coefficient Std。Error

t—Statistic

Prob。C X7 0。111530

16135。44

0。3058250.320338

0。76200.7511R-squared0。003651Meandependentvar10049。04AdjustedR-squared-0031932S。D.dependentvar12585。51S。E.ofregression12784.87Akaikeinfocriterion21。81425Sumsquaredresid4.58E+09Schwarzcriterion21。90767—325。Loglikelihood2138F-statistic0。102616Durbin-Watsonstat0。065981Prob〔F-statistic〕0.7510912、以X3為根底,順次參與其他變量逐步回歸。X3、X2:DependentVariable:YMethod:LeastSquaresDate:10/13/10 Time:01:27Sample:19782023Includedobservations:30VariableCoefficientStd。Errort-StatisticProb.C1976.086388.24135.0898410。0000X2—1。1053390.105222—10.504860。0000X30。7219890.02887925.000560。0000R-squared0.993624Meandependentvar10049。04AdjustedR—squared0。993152S.D.dependentvar12585.51S。Eofregression1041。474Akaikeinfocriterion16.82930Sumsquaredresid29286057Schwarzcriterion16.96942Loglikelihood-249.4395F—statistic2103.946Durbin—Watsonstat1.662637Prob〔F—statistic)0.000000X3、X4:DependentVariable:YLeastSquaresDate:10/13/10 Time:01:27Sample:19782023Includedobservations:30Variable

Coefficient Std。Error

t-Statistic

Prob.C-2414297318。0985-0。7589780。4544X31.6522700.14413111.463670.0000X4—9.2557481。087001—8.5149410。0000R—squared0.991199Meandependentvar10049.04AdjustedR—squared0.990547S.D.dependentvar12585.51S。E.ofregression1223。617Akaikeinfocriterion17。15165SumsquaredresidLoglikelihood40425409—254.2747SchwarzcriterionF—statistic17.291771520。477Durbin—Watsonstat1.669559Prob〔F—statistic〕0.000000X3、X5:DependentVariable:YMethod:LeastSquaresDate:10/13/10 Time:01:28Sample:19782023Includedobservations:30VariableCoefficientStd.Errort-StatisticProb.C27090.895304.5145.1071380.0000X30.5147960。01957626.297030.0000X5—0.2619970。049197—5。3254530.0000R-squared0.984182Meandependentvar10049.04AdjustedR-squared0。983010S。Ddependentvar12585.51S。Eofregression1640.462Akaikeinfocriterion17。73798Sumsquaredres

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論