版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.一個不透明的袋子中裝有10個只有顏色不同的小球,其中2個紅球,3個黃球,5個綠球,從袋子中任意摸出一個球,則摸出的球是綠球的概率為()A. B. C. D.2.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),說法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是拋物線上兩點,則y1>y2,其中說法正確的有()個.A.1 B.2 C.3 D.43.如圖,在平面直角坐標系中,⊙P的圓心坐標是(-3,a)(a>3),半徑為3,函數(shù)y=-x的圖像被⊙P截得的弦AB的長為,則a的值是()A.4 B. C. D.4.的值為()A. B. C. D.5.小明和小華玩“石頭、剪子、布”的游戲.若隨機出手一次,則小華獲勝的概率是()A. B. C. D.6.一元錢硬幣的直徑約為24mm,則用它能完全覆蓋住的正六邊形的邊長最大不能超過()A.12mm B.12mmC.6mm D.6mm7.如圖,反比例函數(shù)的圖象經(jīng)過點A(2,1),若≤1,則x的范圍為()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤18.下列事件中,隨機事件是()A.任意畫一個三角形,其內(nèi)角和為180° B.經(jīng)過有交通信號的路口,遇到紅燈C.在只裝了紅球的袋子中摸到白球 D.太陽從東方升起9.用一個半徑為15、圓心角為120°的扇形圍成一個圓錐,則這個圓錐的底面半徑是()A.5 B.10 C. D.10.如圖,直徑為10的⊙A山經(jīng)過點C(0,5)和點0(0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC的余弦值為()A. B. C. D.11.在同一直角坐標系中,函數(shù)y=kx2﹣k和y=kx+k(k≠0)的圖象大致是()A. B. C. D.12.已知3x=4y,則=()A. B. C. D.以上都不對二、填空題(每題4分,共24分)13.若點A(a,b)在雙曲線y=上,則代數(shù)式ab﹣4的值為_____.14.如圖,的頂點都在正方形網(wǎng)格的格點上,則的值為________.15.設,,,設,則S=________________(用含有n的代數(shù)式表示,其中n為正整數(shù)).16.如圖,四邊形是菱形,,對角線,相交于點,于,連接,則=_________度.17.已知圓錐的底面半徑為3cm,母線長4cm,則它的側(cè)面積為cm1.18.方程x2﹣2x+1=0的根是_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,直線l1與x軸交于點A,與y軸交于點B(0,4),OA=OB,點C(﹣3,n)在直線l1上.(1)求直線l1和直線OC的解析式;(2)點D是點A關于y軸的對稱點,將直線OC沿y軸向下平移,記為l2,若直線l2過點D,與直線l1交于點E,求△BDE的面積.20.(8分)在不透明的袋中有大小形狀和質(zhì)地等完全相同的個小球,它們分別標有數(shù)字,從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再從袋中摸出另一小球.(1)請你用列表或畫樹狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結(jié)果;(2)規(guī)定:如果摸出的兩個小球上的數(shù)字都是方程的根,則小明贏;如果摸出的兩個小球上的數(shù)字都不是方程的根,則小亮贏.你認為這個游戲規(guī)則對小明、小亮雙方公平嗎?請說明理由.21.(8分)已知二次函數(shù)y=ax2+bx﹣3的圖象經(jīng)過點(1,﹣4)和(﹣1,0).(1)求這個二次函數(shù)的表達式;(2)x在什么范圍內(nèi),y隨x增大而減?。吭摵瘮?shù)有最大值還是有最小值?求出這個最值.22.(10分)將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側(cè)面示意圖為圖2;使用時為了散熱,在底板下面墊入散熱架O′AC后,電腦轉(zhuǎn)到AO′B′的位置(如圖3),側(cè)面示意圖為圖4,已知OA=OB=20cm,B′O′⊥OA,垂足為C.(1)求點O′的高度O′C;(精確到0.1cm)(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)多少度?參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.1.cot65°=0.446)23.(10分)如圖,拋物線y=ax2﹣x+c與x軸相交于點A(﹣2,0)、B(4,0),與y軸相交于點C,連接AC,BC,以線段BC為直徑作⊙M,過點C作直線CE∥AB,與拋物線和⊙M分別交于點D,E,點P在BC下方的拋物線上運動.(1)求該拋物線的解析式;(2)當△PDE是以DE為底邊的等腰三角形時,求點P的坐標;(3)當四邊形ACPB的面積最大時,求點P的坐標并求出最大值.24.(10分)如圖,中,,,為內(nèi)部一點,且.(1)求證:;(2)求證:.25.(12分)已知拋物線經(jīng)過點和,與軸交于另一點,頂點為.(1)求拋物線的解析式,并寫出點的坐標;(2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;(3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).26.某養(yǎng)豬場對豬舍進行噴藥消毒.在消毒的過程中,先經(jīng)過的藥物集中噴灑,再封閉豬舍,然后再打開窗戶進行通風.已知室內(nèi)每立方米空氣中含藥量()與藥物在空氣中的持續(xù)時間()之間的函數(shù)圖象如圖所示,其中在打開窗戶通風前與分別滿足兩個一次函數(shù),在通風后與滿足反比例函數(shù).(1)求反比例函數(shù)的關系式;(2)當豬舍內(nèi)空氣中含藥量不低于且持續(xù)時間不少于,才能有效殺死病毒,問此次消毒是否有效?
參考答案一、選擇題(每題4分,共48分)1、D【解析】隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).【詳解】解:綠球的概率:P==,故選:D.【點睛】本題考查概率相關概念,熟練運用概率公式計算是解題的關鍵.2、D【分析】由拋物線開口方向得到a>0,根據(jù)拋物線的對稱軸得b=2a>0,則2a﹣b=0,則可對②進行判斷;根據(jù)拋物線與y軸的交點在x軸下方得到c<0,則abc<0,于是可對①進行判斷;由于x=﹣1時,y<0,則得到a﹣2a+c<0,則可對③進行判斷;通過點(﹣5,y1)和點(,y2)離對稱軸的遠近對④進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線對稱軸為直線x=﹣=﹣1,∴b=2a>0,則2a﹣b=0,所以②正確;∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc<0,所以①正確;∵x=﹣1時,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正確;∵點(﹣5,y1)離對稱軸要比點(,y2)離對稱軸要遠,∴y1>y2,所以④正確.故答案為D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系,靈活運用二次函數(shù)解析式和圖像是解答本題的關鍵..3、B【分析】如圖所示過點P作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,可得OC=3,PC=a,把x=-3代入y=-x得y=3,可確定D點坐標,可得△OCD為等腰直角三角形,得到△PED也為等腰直角三角形,又PE⊥AB,由垂徑定理可得AE=BE=AB=2,在Rt△PBE中,由勾股定理可得PE=,可得PD=PE=,最終求出a的值.【詳解】作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖,∵⊙P的圓心坐標是(-3,a),∴OC=3,PC=a,把x=-3代入y=-x得y=3,∴D點坐標為(-3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.【點睛】本題主要考查了垂徑定理、一次函數(shù)圖象上點的坐標特征以及勾股定理,熟練掌握圓中基本定理和基礎圖形是解題的關鍵.4、C【分析】根據(jù)特殊角的三角函數(shù)值解答即可.【詳解】tan60°=,故選C.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題關鍵.5、A【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小華獲勝的情況數(shù),再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:
∵共有9種等可能的結(jié)果,小華獲勝的情況數(shù)是3種,
∴小華獲勝的概率是:=.
故選:A.【點睛】此題主要考查了列表法和樹狀圖法求概率知識,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、A【解析】試題解析:已知圓內(nèi)接半徑r為12mm,則OB=12,∴BD=OB?sin30°=12×=6,則BC=2×6=12,可知邊長為12mm,就是完全覆蓋住的正六邊形的邊長最大.故選A.7、C【解析】解:由圖像可得,當<0或≥2時,≤1.故選C.8、B【分析】由題意根據(jù)隨機事件就是可能發(fā)生也可能不發(fā)生的事件這一定義,依次對選項進行判斷.【詳解】解:A、任意畫一個三角形,其內(nèi)角和為180°,是必然事件,不符合題意;B、經(jīng)過有交通信號的路口遇到紅燈,是隨機事件,符合題意;C、在只裝了紅球的袋子中摸到白球,是不可能事件,不符合題意;D、太陽從東方升起,是必然事件,不符合題意;故選:B.【點睛】本題主要考查必然事件、不可能事件、隨機事件的概念,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.9、A【分析】根據(jù)弧長公式計算出弧長,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,因而圓錐的底面周長是10π,設圓錐的底面半徑是r,列出方程求解.【詳解】半徑為15cm,圓心角為120°的扇形的弧長是=10π,圓錐的底面周長等于側(cè)面展開圖的扇形弧長,因而圓錐的底面周長是10π.
設圓錐的底面半徑是r,
則得到2πr=10π,
解得:r=5,
這個圓錐的底面半徑為5.故選擇A.【點睛】本題考查弧長的計算,解題的關鍵是掌握弧長的計算公式.10、C【分析】連接CD,由直徑所對的圓周角是直角,可得CD是直徑;由同弧所對的圓周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的長可求出sin∠ODC.【詳解】設⊙A交x軸于另一點D,連接CD,∵∠COD=90°,∴CD為直徑,∵直徑為10,∴CD=10,∵點C(0,5)和點O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故選C.【點睛】此題考查了圓周角定理、銳角三角函數(shù)的知識.注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.11、D【解析】試題分析:A、由一次函數(shù)y=kx+k的圖象可得:k>0,此時二次函數(shù)y=kx2﹣kx的圖象應該開口向上,錯誤;B、由一次函數(shù)y=kx+k圖象可知,k>0,此時二次函數(shù)y=kx2﹣kx的圖象頂點應在y軸的負半軸,錯誤;C、由一次函數(shù)y=kx+k可知,y隨x增大而減小時,直線與y軸交于負半軸,錯誤;D、正確.故選D.考點:1、二次函數(shù)的圖象;2、一次函數(shù)的圖象12、A【分析】根據(jù)3x=4y得出x=y(tǒng),再代入要求的式子進行計算即可.【詳解】∵3x=4y,∴x=y(tǒng),∴==;故選:A.【點睛】此題考查了比例的性質(zhì),熟練掌握比例的性質(zhì)即兩內(nèi)項之積等于兩外項之積是解題的關鍵.二、填空題(每題4分,共24分)13、﹣1【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征得到k=xy,由此求得ab的值,然后將其代入所求的代數(shù)式進行求值即可.【詳解】解:∵點A(a,b)在雙曲線y=上,∴3=ab,∴ab﹣4=3﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k是常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.14、【分析】先證明△ABC為直角三角形,再根據(jù)正切的定義即可求解.【詳解】根據(jù)網(wǎng)格的性質(zhì)設網(wǎng)格的邊長為1,則AB=,AC=,BC=∵AB2+AC2=BC2,∴△ABC為直角三角形,∠A=90°,∴=故填:.【點睛】此題主要考查正切的求解,解題的關鍵是證明三角形為直角三角形.15、【分析】先根據(jù)題目中提供的三個式子,分別計算的值,用含n的式子表示其規(guī)律,再計算S的值即可.【詳解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案為:【點睛】本題為規(guī)律探究問題,難度較大,根據(jù)提供的式子發(fā)現(xiàn)規(guī)律,并表示規(guī)律是解題的關鍵,同時要注意對于式子的理解.16、25【解析】首先求出∠HDB的度數(shù),再利用直角三角形斜邊中線定理可得OH=OD,由此可得∠OHD=∠ODH即可解決問題.【詳解】∵四邊形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°?∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°?ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案為:25.【點睛】本題考查了菱形的性質(zhì),直角三角形斜邊中線定理,熟練掌握性質(zhì)定理是解題的關鍵.17、11π【解析】試題分析:圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.由題意得它的側(cè)面積.考點:圓錐的側(cè)面積點評:本題屬于基礎應用題,只需學生熟練掌握圓錐的側(cè)面積公式,即可完成.18、x1=x2=1【解析】方程左邊利用完全平方公式變形,開方即可求出解.【詳解】解:方程變形得:(x﹣1)2=0,解得:x1=x2=1.故答案是:x1=x2=1.【點睛】考查了解一元二次方程﹣配方法,利用此方法解方程時,首先將二次項系數(shù)化為1,常數(shù)項移到方程右邊,然后兩邊都加上一次項系數(shù)一半的平方,左邊化為完全平方式,右邊合并,開方轉(zhuǎn)化為兩個一元一次方程來求解.三、解答題(共78分)19、(1)直線I1的解析式:y=2x+4,直線OC解析式y(tǒng)=x;(2)S△BDE=16.【分析】(1)根據(jù)題意先求A的坐標,然后待定系數(shù)就AB解析式,把點C的坐標代入,可得n,即可求得直線OC解析式;(2)根據(jù)對稱性先去D的坐標,根據(jù)直線平移,k不變,可求DE解析式,然后求E的坐標,即可求出面積.【詳解】解:(1)∵點B(0,4),OA=OB,∴OA=OB==2,∴A(﹣2,0),設OA解析式y(tǒng)=kx+b,∴解得:,∴直線I1的解析式:y=2x+4,∵C(﹣3,n)在直線l1上,∴n=﹣3×2+4n=﹣2∴C(﹣3,﹣2)設OC的解析式:y=k1x∴﹣2=﹣3k1k1=,∴直線OC解析式y(tǒng)=x;(2)∵D點與A點關于y軸對稱∴D(2,0)設DE解析式y(tǒng)=x+b′,∴0=×2+b′,∴b′=﹣,∴DE解析式y(tǒng)=x﹣,當x=0,y=﹣,解得:,∴E(﹣4,﹣4),∴S△BDE=×(2+2)(4+4)=16.【點睛】本題考查了兩條直線相交與平行問題,用待定系數(shù)法解一次函數(shù),一次函數(shù)的性質(zhì),關鍵是找出點的坐標.20、(1)見解析;(2)公平,理由見解析.【分析】(1)可以利用樹狀圖表示出所有的可能出現(xiàn)的結(jié)果;
(2)分別求得兩人贏的概率,判斷是否相等即可求解.【詳解】(1)利用樹狀圖表示為:;(2)公平;解方程得:,根據(jù)樹狀圖知,共有12種情況,小明贏的情況有:3,4和4,3兩種,因而小明贏的概率是:,小亮贏的情況有:1,2和2,1兩種,小亮贏的概率是:小亮贏的概率是:,兩人贏的機會相等,因而雙方公平.【點睛】本題主要考查了列表法和樹狀圖法、游戲公平性的判斷,一元二次方程的求解.解答本題的關鍵是明確題意,畫出相應的樹狀圖,求出相應的概率.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.21、(1)y=x2﹣2x﹣3;(2)當x<1時,y隨x增大而減小,該函數(shù)有最小值,最小值為﹣1.【分析】(1)將(1,﹣1)和(﹣1,0)代入解析式中,即可求出結(jié)論;(2)將二次函數(shù)的表達式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的圖象及性質(zhì)即可求出結(jié)論.【詳解】(1)根據(jù)題意得,解得,所以拋物線解析式為y=x2﹣2x﹣3;(2)∵y=(x﹣1)2﹣1,∴拋物線的對稱軸為直線x=1,頂點坐標為(1,﹣1),∵a>0,∴當x<1時,y隨x增大而減小,該函數(shù)有最小值,最小值為﹣1.【點睛】此題考查的是二次函數(shù)的綜合大題,掌握利用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的圖象及性質(zhì)是解決此題的關鍵.22、(1)8.5cm;(2)顯示屏的頂部B′比原來升高了10.3cm;(3)顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)25度.【解析】(1)∵B′O′⊥OA,垂足為C,∠AO′B=115°,∴∠AO′C=65°,∵cos∠CO′A=,∴O′C=O′A?cos∠CO′A=20?cos65°=8.46≈8.5(cm);(2)如圖2,過B作BD⊥AO交AO的延長線于D.∵∠AOB=115°,∴∠BOD=65°.∵sin∠BOD=,∴BD=OB?sin∠BOD=20×sin65°=18.12,∴O′B′+O′C﹣BD=20+8.46﹣18.12=10.34≈10.3(cm),∴顯示屏的頂部B′比原來升高了10.3cm;(3)如圖4,過O′作EF∥OB交AC于E,∴∠FEA=∠BOA=115°,∠FOB′=∠EO′C=∠FEA﹣∠O′CA=115°﹣90°=25°,∴顯示屏O′B′應繞點O′按順時針方向旋轉(zhuǎn)25度.23、(1)y=x2﹣x﹣3;(2)P(3,﹣);(3)點P(2,﹣3),最大值為12【分析】(1)用交點式設出拋物線的表達式,化為一般形式,根據(jù)系數(shù)之間的對應關系即可求解;(2)根據(jù)(1)中的表達式求出點C(0,-3),函數(shù)對稱軸為:x=1,則點D(2,-3),點E(4,-3),當△PDE是以DE為底邊的等腰三角形時,點P在線段DE的中垂線上,據(jù)此即可求解;
(3)求出直線BC的表達式,設出P、H點的坐標,根據(jù)四邊形ACPB的面積=S△ABC+S△BHP+S△CHP進行計算,化為頂點式即可求解.【詳解】(1)拋物線的表達式為:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣,解得:a=,故拋物線的表達式為:y=x2﹣x﹣3;(2)當x=0時,y=-3,故點C的坐標為(0,﹣3),函數(shù)對稱軸為:x==1,∵CE∥AB∴點D(2,﹣3),點E(4,﹣3),則DE的中垂線為:x==3,當x=3時,y=x2﹣x﹣3=﹣,故點P(3,﹣);(3)設直線BC的解析式為y=kx+b,把B(4,0)C(0,﹣3)代入得:解得:∴直線BC的表達式為:y=x﹣3,故點P作y軸的平行線交BC于點H,設點P(x,x2﹣x﹣3),則點H(x,x﹣3);四邊形ACPB的面積=S△ABC+S△BHP+S△CHP=3×6+HP×OB=9+×4×(x﹣3﹣x2+x+3)=﹣x2+3x+9=,∵﹣<0,故四邊形ACPB的面積有最大值為12,此時,點P(2,﹣3).【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)的性質(zhì)、圓的基本知識、面積的計算等,綜合性強,掌握中點坐標公式及作輔助線的方法是關鍵.24、(1)證明見解析;(2)證明見解析.【分析】(1)利用等腰三角形的性質(zhì)、三角形內(nèi)角和定理以及等式的性質(zhì)判斷出∠PBC=∠PAB,進而得出結(jié)論;
(2)由(1)的結(jié)論得出,進而得出,即可得出結(jié)論.【詳解】證明:(1)∵,,∴,又,∴,∴,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高端住宅項目分銷渠道合作協(xié)議3篇
- 二零二五版市政道路砍割樁施工項目合同2篇
- 2025年度生態(tài)農(nóng)業(yè)餐飲食材配送框架協(xié)議3篇
- 梧州職業(yè)學院《推拿學》2023-2024學年第一學期期末試卷
- 2024版醫(yī)療機構(gòu)餐飲服務合作協(xié)議版B版
- 二零二五版醫(yī)療設備檢驗試劑配套供應協(xié)議2篇
- 2024版行政人員合同
- 二零二五版單位食堂餐飲服務設施升級改造合同3篇
- 2024版廣告設計與發(fā)布合同
- 太湖創(chuàng)意職業(yè)技術學院《輕化工程專業(yè)發(fā)展概論》2023-2024學年第一學期期末試卷
- 2024年醫(yī)師定期考核臨床業(yè)務知識考試題庫及答案(共三套)
- 2014新PEP小學英語六年級上冊-Unit5-What-does-he-do復習課件
- 建筑材料供應鏈管理服務合同
- 孩子改名字父母一方委托書
- 2024-2025學年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 2024年事業(yè)單位財務工作計劃例文(6篇)
- 2024年工程咨詢服務承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協(xié)議書范文范本
- 2023-2024學年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論