2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)_第1頁
2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)_第2頁
2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)_第3頁
2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)_第4頁
2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年湖北省咸寧市普通高校對口單招數(shù)學自考模擬考試(含答案)學校:________班級:________姓名:________考號:________

一、單選題(22題)1.A.B.C.

2.下列函數(shù)為偶函數(shù)的是A.B.C.

3.下列命題錯誤的是()A.對于兩個向量a,b(a≠0),如果有一個實數(shù),使b=a,則a與b共線

B.若|a|=|b|,則a=b

C.若a,b為兩個單位向量,則a·a=b·b

D.若a⊥b,則a·b=0

4.三角函數(shù)y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π

5.已知集合M={0,1,2,3},N={1,3,4},那么M∩N等于()A.{0}B.{0,1}C.{1,3}D.{0,1,2,3,4}

6.在2,0,1,5這組數(shù)據(jù)中,隨機取出三個不同的數(shù),則數(shù)字2是取出的三個不同數(shù)的中位數(shù)的概率為()A.3/4B.5/8C.1/2D.1/4

7.A.b>a>0B.b<a<0C.a>b>0D.a<b<0

8.已知互為反函數(shù),則k和b的值分別是()A.2,

B.2,

C.-2,

D.-2,

9.下列函數(shù)中是奇函數(shù)的是A.y=x+3

B.y=x2+1

C.y=x3

D.y=x3+1

10.直線4x+2y-7=0和直線3x-y+5=0的夾角是()A.30°B.45°C.60°D.90°

11.已知A(3,1),B(6,1),C(4,3)D為線段BC的中點,則向量AC與DA的夾角是()A.

B.

C.

D.

12.根據(jù)如圖所示的框圖,當輸入z為6時,輸出的y=()A.1B.2C.5D.10

13.設一直線過點(2,3)且它在坐標軸上的截距和為10,則直線方程為()A.

B.

C.

D.

14.已知向量a=(1,3)與b=(x,9)共線,則實數(shù)x=()A.2B.-2C.-3D.3

15.A.-1B.-4C.4D.2

16.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

17.命題“若f(x)是奇函數(shù),則f(-x)是奇函數(shù)”的否命題是()A.f(x)是偶函數(shù),則f(-x)是偶函數(shù)

B.若f(x)不是奇函數(shù),則f(-x)不是奇函數(shù)

C.若f(-x)是奇函數(shù),則f(x)是奇函數(shù)

D.若f(-x)不是奇函數(shù),則f(x)不是奇函數(shù)

18.A.3B.8C.1/2D.4

19.函數(shù)y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

20.從1,2,3,4,5,6這6個數(shù)中任取兩個數(shù),則取出的兩數(shù)都是偶數(shù)的概率是()A.1/3B.1/4C.1/5D.1/6

21.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

22.以點P(2,0),Q(0,4)為直徑的兩個端點的圓的方程是()A.(x-l)2+(y-2)2=5

B.(x-1)2+y2=5

C.(x+1)2+y2=25

D.(x+1)2+y=5

二、填空題(10題)23.設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f⑴=______.

24.

25.

26.已知α為第四象限角,若cosα=1/3,則cos(α+π/2)=_______.

27.在△ABC中,若acosA=bcosB,則△ABC是

三角形。

28.

29.函數(shù)f(x)=+㏒2x(x∈[1,2])的值域是________.

30.某田徑隊有男運動員30人,女運動員10人.用分層抽樣的方法從中抽出一個容量為20的樣本,則抽出的女運動員有______人.

31.

32.

三、計算題(10題)33.近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應的垃圾箱,為調查居民生活垃圾的正確分類投放情況,現(xiàn)隨機抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。

34.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

35.在等差數(shù)列{an}中,前n項和為Sn

,且S4

=-62,S6=-75,求等差數(shù)列{an}的通項公式an.

36.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

37.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

38.從含有2件次品的7件產品中,任取2件產品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

39.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

40.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

41.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

42.求焦點x軸上,實半軸長為4,且離心率為3/2的雙曲線方程.

四、簡答題(10題)43.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程

44.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

45.在ABC中,AC丄BC,ABC=45°,D是BC上的點且ADC=60°,BD=20,求AC的長

46.某商場經銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。

47.在拋物線y2=12x上有一弦(兩端點在拋物線上的線段)被點M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長度.

48.化簡a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

49.證明上是增函數(shù)

50.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。

51.一條直線l被兩條直線:4x+y+6=0,3x-5y-6=0截得的線段中點恰好是坐標原點,求直線l的方程.

52.已知求tan(a-2b)的值

五、解答題(10題)53.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調區(qū)間.

54.已知公差不為零的等差數(shù)列{an}的前4項和為10,且a2,a3,a7成等比數(shù)列.(1)求通項公式an;(2)設bn=2an求數(shù)列{bn}的前n項和Sn.

55.李經理按照市場價格10元/千克在本市收購了2000千克香菇存放人冷庫中.據(jù)預測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出費用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.(1)若存放x天后,將這批香菇一次性出售,設這批香菇的銷售總金額為y元,試寫出y與x之間的函數(shù)關系式;(2)李經理如果想獲得利潤22500元,需將這批香菇存放多少天后出售?(提示:利潤=銷售總金額一收購成本一各種費用)(3)李經理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

56.已知等差數(shù)列{an}的前72項和為Sn,a5=8,S3=6.(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{an}的前k項和Sk=72,求k的值.

57.已知函數(shù)f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[-π/6,π/4]上的最大值和最小值.

58.

59.已知橢圓的中心為原點,焦點在x軸上,離心率為,且經過點M(4,1),直線l:y=x+m交橢圓于異于M的不同兩點A,B直線MA,MB與x軸分別交于點E,F(xiàn).(1)求橢圓的標準方程;(2)求m的取值范圍.

60.

61.已知橢圓C:x2/a2+y2/b2=1(a>b>0)的離心率為,在C上;(1)求C的方程;(2)直線L不過原點O且不平行于坐標軸,L與C有兩個交點A,B,線段AB的中點為M.證明:直線OM的斜率與直線L的斜率的乘積為定值.

62.已知函數(shù)f(x)=sinx+cosx,x∈R.(1)求函數(shù)f(x)的最小正周期和最大值;(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經過怎樣的變換得到?

六、單選題(0題)63.直線ax+by+b-a=0與圓x2+y2-x-2=0的位置關系是()A.相離B.相交C.相切D.無關

參考答案

1.A

2.A

3.B向量包括長度和方向,模相等方向不一定相同,所以B錯誤。

4.A

5.C集合的運算∵M={0,1,2,3},N={1,3,4},∴M∩N={1,3},

6.C隨機抽樣的概率.分析題意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4種取法,符合題意的取法有2種,故所求概率P=1/2.故選C

7.D

8.B因為反函數(shù)的圖像是關于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達,再把x,y互換,代入二式,得到m=-3/2.

9.C

10.B

11.C

12.D程序框圖的運算.輸入x=6.程序運行情況如下:x=6-3=3>0,x=3-3=0≥0,x=0-3=-3<0,退出循環(huán),執(zhí)行:y=x2+1=(-3)2+1=10,輸出y=10.

13.D

14.D

15.C

16.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因為n⊥β,所以n⊥L.

17.B四種命題的定義.否命題是既否定題設又否定結論.

18.A

19.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期為6π。

20.C本題主要考查隨機事件及其概率.任取兩數(shù)都是偶數(shù),共有C32=3種取法,所有取法共有C62=15種,故概率為3/15=1/5.

21.A

22.A圓的方程.圓心為((2+0)/2,(0+4)/2)即(1,2),

23.-3.函數(shù)的奇偶性的應用.∵f(x)是定義在只上的奇函數(shù),且x≤0時,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.

24.7

25.5n-10

26.

利用誘導公式計算三角函數(shù)值.∵α為第四象限角,∴sinα-

27.等腰或者直角三角形,

28.-2/3

29.[2,5]函數(shù)值的計算.因為y=2x,y=㏒2x為増函數(shù),所以y=2x+㏒2x在[1,2]上單調遞增,故f(x)∈[2,5].

30.5分層抽樣方法.因為男運動員30人,女運動員10人,所以抽出的女運動員有10f(10+30)×20=1/4×20=5人.

31.0

32.π/2

33.

34.

35.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

36.

37.

38.

39.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

40.

41.

42.解:實半軸長為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

43.

44.

45.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則

46.

47.∵(1)這條弦與拋物線兩交點

48.原式=

49.證明:任取且x1<x2∴即∴在是增函數(shù)

50.

51.

52.

53.(1)f(x)=3x2+6ax+b,由題知:

54.(1)由題意知

55.(1)由題意,y與x之間的函數(shù)關系式為y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由題(-3x2+940x+20000)-(10×2000+340x)=22500;化簡得,x2-200x+7500=0;解得x1=50,x2=150(不合題意,舍去);因此,李經理想獲得利潤22500,元,需將這批香菇存放50天后出售.(3)設利潤為w,則由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,當x=100時,wmax=30000;又因為100∈(0,110),所以李經理將這批香菇存放100天后出售可獲得最大利潤為30000元.

56.(1)設等差數(shù)列{an}的公差為d由題

57.

58.

59.(1)設橢圓的方程為x2/a2+y2/b2=1因為e=,所以a2=4b2,又因為橢圓過點M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故橢圓標準方x2/20+y2/5=1(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論