版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
九年級《二次函數(shù)》課件4篇理解間接即通過變形運用開平方法降次解方程,并能嫻熟應(yīng)用它解決一些詳細(xì)問題。
通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟。
重點
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟。
難點
將不行直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧。
一、復(fù)習(xí)引入
(學(xué)生活動)請同學(xué)們解以下方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
教師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0)。
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探究新知
列出下面問題的方程并答復(fù):
(1)列出的經(jīng)化簡為一般形式的方程與剛剛解題的方程有什么不同呢?
(2)能否直接用上面前三個方程的解法呢?
問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?
(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征。
(2)不能。
既然不能直接降次解方程,那么,我們就應(yīng)當(dāng)設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:
x2+6x-16=0移項→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負(fù)值,所以場地的寬為2m,長為8m.
像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法。
可以看出,配方法是為了降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解。
例1用配方法解以下關(guān)于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)明顯方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上。
解:略。
三、穩(wěn)固練習(xí)
教材第9頁練習(xí)1,2.(1)(2)。
四、課堂小結(jié)
本節(jié)課應(yīng)把握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程。
五、作業(yè)布置
九年級《二次函數(shù)》課件篇二
教學(xué)目標(biāo)
(一)教學(xué)學(xué)問點
1、能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
2、進(jìn)一步進(jìn)展估算力量。
(二)力量訓(xùn)練要求
1、經(jīng)受用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗。
2、利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗數(shù)形結(jié)合思想。
(三)情感與價值觀要求
通過利用二次函數(shù)的圖象估量一元二次方程的根,進(jìn)一步把握二次函數(shù)圖象與x軸的交點坐標(biāo)和一元二次方程的根的關(guān)系,提高估算力量。
教學(xué)重點
1、經(jīng)受探究二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系。
2、能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點
利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)方法
學(xué)生合作溝通學(xué)習(xí)法。
教具預(yù)備
投影片三張
第一張:(記作§2.8.2A)
其次張:(記作§2.8.2B)
第三張:(記作§2.8.2C)
教學(xué)過程
Ⅰ。創(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點的橫坐標(biāo),就是y=0時的一元二次方程的根,于是,我們在不解方程的狀況下,只要知道二次函數(shù)與x軸交點的橫坐標(biāo)即可。但是在圖象上我們很難精確地求出方程的解,所以要進(jìn)展估算。本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估量一元二次方程的根。
九年級《二次函數(shù)》課件篇三
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些詳細(xì)問題。
提出問題,列出缺一次項的一元二次方程ax2+c=0,依據(jù)平方根的意義解出這個方程,然后學(xué)問遷移到解a(ex+f)2+c=0型的一元二次方程。
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)悟降次——轉(zhuǎn)化的數(shù)學(xué)思想。
難點
通過依據(jù)平方根的意義解形如x2=n的方程,將學(xué)問遷移到依據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
一、復(fù)習(xí)引入
學(xué)生活動:請同學(xué)們完成以下各題。
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:依據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.
問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?
二、探究新知
上面我們已經(jīng)講了x2=9,依據(jù)平方根的意義,直接開平方得x=±3,假如x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學(xué)生分組爭論)
教師點評:答復(fù)是確定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略。
例2市政府規(guī)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長率。
分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)當(dāng)是10+10x=10(1+x);二年后人均住房面積就應(yīng)當(dāng)是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
由于每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去。
所以,每年人均住房面積增長率應(yīng)為20%。
(學(xué)生小結(jié))教師引導(dǎo)提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程。我們把這種思想稱為“降次轉(zhuǎn)化思想”。
三、穩(wěn)固練習(xí)
教材第6頁練習(xí)。
四、課堂小結(jié)
本節(jié)課應(yīng)把握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,到達(dá)降次轉(zhuǎn)化之目的。若p0則方程無解。
五、作業(yè)布置
九年級《二次函數(shù)》課件篇四
1、通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數(shù)、一次項及其系數(shù)與常數(shù)項等概念。
2、了解一元二次方程的解的概念,會檢驗一個數(shù)是不是一元二次方程的解。
重點
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡潔問題。
難點
一元二次方程及其二次項系數(shù)、一次項系數(shù)和常數(shù)項的識別。
活動1復(fù)習(xí)舊知
1、什么是方程?你能舉一個方程的例子嗎?
2、以下哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式。
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3、以下哪個實數(shù)是方程2x-1=3的解?并給出方程的解的概念。
A.0B.1C.2D.3
活動2探究新知
依據(jù)題意列方程。
1、教材第2頁問題1.
提出問題:
(1)正方形的大小由什么量打算?此題應(yīng)當(dāng)設(shè)哪個量為未知數(shù)?
(2)此題中有什么數(shù)量關(guān)系?能利用這個數(shù)量關(guān)系列方程嗎?怎么列方程?
(3)這個方程能整理為比擬簡潔的形式嗎?請說出整理之后的方程。
2、教材第2頁問題2.
提出問題:
(1)此題中有哪些量?由這些量可以得到什么?
(2)競賽隊伍的數(shù)量與競賽的場次有什么關(guān)系?假如有5個隊參賽,每個隊競賽幾場?一共有20場競賽嗎?假如不是20場競賽,那么畢竟競賽多少場?
(3)假如有x個隊參賽,一共競賽多少場呢?
3、一個數(shù)比另一個數(shù)大3,且兩個數(shù)之積為0,求這兩個數(shù)。
提出問題:
此題需要設(shè)兩個未知數(shù)嗎?假如可以設(shè)一個未知數(shù),那么方程應(yīng)當(dāng)怎么列?
4、一個正方形的面積的2倍等于25,這個正方形的邊長是多少?
活動3歸納概念
提出問題:
(1)上述方程與一元一次方程有什么一樣點和不同點?
(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?
(3)歸納一元二次方程的概念。
1、一元二次方程:只含有________個未知數(shù),并且未知數(shù)的次數(shù)是________,這樣的________方程,叫做一元二次方程。
2、一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。
提出問題:
(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2x2-x+1=0的一次項系數(shù)是1嗎?為什么?
3、一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解(根)。
活動4例題與練習(xí)
例1在以下方程中,屬于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
總結(jié):推斷一個方程是否是一元二次方程的依據(jù):(1)整式方程;(2)只含有一個未知數(shù);(3)含有未知數(shù)的項的次數(shù)是2.留意有些方程化簡前含有二次項,但是化簡后二次項系數(shù)為0,這樣的方程不是一元二次方程。
例2教材第3頁例題。
例3以-2為根的一元二次方程是()
A.x2+2x-1=0B.x2-x-2=0
C.x2+x+2=0D.x2+x-2=0
總結(jié):推斷一個數(shù)是否為方程的解,可以將這個數(shù)代入方程,推斷方程左、右兩邊的值是否相等。
練習(xí):
1、若(a-1)x2+3ax-1=0是關(guān)于x的一元二次方程,那么a的取值范圍是________.
2、將以下一元二次方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生態(tài)旅游場承包經(jīng)營合作協(xié)議范本4篇
- 2025年度大棚農(nóng)業(yè)保險合作協(xié)議3篇
- 二手房交易標(biāo)準(zhǔn)協(xié)議樣本(2024個人版)版
- 2025年度叉車租賃與租賃物租賃期限調(diào)整合同4篇
- 2025年昌月離婚協(xié)議書婚姻解除及財產(chǎn)清算范本4篇
- 2025年度航空航天材料質(zhì)量保證協(xié)議4篇
- 2024年重慶地區(qū)標(biāo)準(zhǔn)離婚合同模板一
- 2024私募股權(quán)投資居間協(xié)議
- 專項舞臺效果策劃與實施協(xié)議版A版
- 2024年食堂運營合作協(xié)議標(biāo)準(zhǔn)文本版
- 考級代理合同范文大全
- 2024解析:第三章物態(tài)變化-講核心(原卷版)
- DB32T 1590-2010 鋼管塑料大棚(單體)通 用技術(shù)要求
- 安全行車知識培訓(xùn)
- 2024年安徽省高校分類對口招生考試數(shù)學(xué)試卷真題
- 第12講 語態(tài)一般現(xiàn)在時、一般過去時、一般將來時(原卷版)
- 2024年采購員年終總結(jié)
- 2024年新疆區(qū)公務(wù)員錄用考試《行測》試題及答案解析
- 肺動脈高壓的護(hù)理查房課件
- 2025屆北京巿通州區(qū)英語高三上期末綜合測試試題含解析
- 公婆贈予兒媳婦的房產(chǎn)協(xié)議書(2篇)
評論
0/150
提交評論