版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
常用的添加輔助線幾何,最難的部分就是輔助線,整理了一些做輔助線的方法,希望能對(duì)大家有幫助!一、添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長(zhǎng)使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:(1)平行線是個(gè)基本圖形:當(dāng)幾何中出現(xiàn)平行線時(shí)添輔助線的關(guān)鍵是添與二條平行線都相交的第三條直線。(2)等腰三角形是個(gè)簡(jiǎn)單的基本圖形:當(dāng)幾何問(wèn)題中出現(xiàn)一點(diǎn)發(fā)出的二條相等線段時(shí)往往要補(bǔ)完整等腰三角形。出現(xiàn)角平分線與平行線組合時(shí)可延長(zhǎng)平行線與角的二邊相交得等腰三角形。(3)等腰三角形中的重要線段是個(gè)重要的基本圖形:出現(xiàn)等腰三角形底邊上的中點(diǎn)添底邊上的中線;出現(xiàn)角平分線與垂線組合時(shí)可延長(zhǎng)垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。(4)直角三角形斜邊上中線基本圖形出現(xiàn)直角三角形斜邊上的中點(diǎn),往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊,則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。(5)三角形中位線基本圖形幾何問(wèn)題中出現(xiàn)多個(gè)中點(diǎn)時(shí),往往添加三角形中位線基本圖形進(jìn)行證明,當(dāng)有中點(diǎn)沒(méi)有中位線時(shí)則添中位線,當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點(diǎn)的線段帶一個(gè)中點(diǎn)則可過(guò)這中點(diǎn)添倍線段的平行線得三角形中位線基本圖形;當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點(diǎn)是某線段的中點(diǎn),則可過(guò)帶中點(diǎn)線段的端點(diǎn)添半線段的平行線得三角形中位線基本圖形。(6)全等三角形:全等三角形有軸對(duì)稱形,中心對(duì)稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個(gè)相等角關(guān)于某一直線成軸對(duì)稱就可以添加軸對(duì)稱形全等三角形:或添對(duì)稱軸,或?qū)⑷切窝貙?duì)稱軸翻轉(zhuǎn)。當(dāng)幾何問(wèn)題中出現(xiàn)一組或兩組相等線段位于一組對(duì)頂角兩邊且成一直線時(shí)可添加中心對(duì)稱形全等三角形加以證明,添加方法是將四個(gè)端點(diǎn)兩兩連結(jié)或過(guò)二端點(diǎn)添平行線(7)相似三角形:相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉(zhuǎn)型;當(dāng)出現(xiàn)相比線段重疊在一直線上時(shí)(中點(diǎn)可看成比為1)可添加平行線得平行線型相似三角形。若平行線過(guò)端點(diǎn)時(shí),則可以分點(diǎn)或另一端點(diǎn)的線段為平行方向,這類題目中往往有多種作平行線方法。(8)特殊角直角三角形當(dāng)出現(xiàn)30,45,60,120,135,150度特殊角時(shí)可添加特殊角直角三角形,利用4度5角直角三角形三邊比為1:1:V2;30度角直角三角形三邊比為1:於:2進(jìn)行證明。(9)半圓上的圓周角出現(xiàn)直徑與半圓上的點(diǎn),添90度的圓周角;出現(xiàn)90度的圓周角則添它所對(duì)弦---直徑;平面幾何中總共只有二十多個(gè)基本圖形就像房子不外有一磚,瓦,水泥,石灰,木等組成一樣。二、基本圖形的輔助線的畫(huà)法.三角形問(wèn)題添加輔助線方法方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點(diǎn)的題目,常常利用三角形的中位線,通過(guò)這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很容易地解決了問(wèn)題。方法2:含有平分線的題目,常以角平分線為對(duì)稱軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利用全等三角形的知識(shí)解決問(wèn)題。方法3:結(jié)論是兩線段相等的題目常畫(huà)輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類題目,常采用截長(zhǎng)法或補(bǔ)短法,所謂截長(zhǎng)法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于第二條線段。.平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對(duì)邊、對(duì)角和對(duì)角線都具有某些相同性質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問(wèn)題轉(zhuǎn)化成常見(jiàn)的三角形、正方形等問(wèn)題處理,其常用方法有下列幾種,舉例簡(jiǎn)解如下:(1)連對(duì)角線或平移對(duì)角線:(2)過(guò)頂點(diǎn)作對(duì)邊的垂線構(gòu)造直角三角形(3)連接對(duì)角線交點(diǎn)與一邊中點(diǎn),或過(guò)對(duì)角線交點(diǎn)作一邊的平行線,構(gòu)造線段平行或中位線(4)連接頂點(diǎn)與對(duì)邊上一點(diǎn)的線段或延長(zhǎng)這條線段,構(gòu)造三角形相似或等積三角形。(5)過(guò)頂點(diǎn)作對(duì)角線的垂線,構(gòu)成線段平行或三角形全等..梯形中常用輔助線的添法梯形是一種特殊的四邊形。它是平行四邊形、三角形知識(shí)的綜合,通過(guò)添加適當(dāng)?shù)妮o助線將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決。輔助線的添加成為問(wèn)題解決的橋梁,梯形中常用到的輔助線有:
(1)在梯形內(nèi)部平移一腰。(2)梯形外平移一腰(3)梯形內(nèi)平移兩腰(4)延長(zhǎng)兩腰(5)過(guò)梯形上底的兩端點(diǎn)向下底作高(6)平移對(duì)角線(7)連接梯形一頂點(diǎn)及一腰的中點(diǎn)。(8)過(guò)一腰的中點(diǎn)作另一腰的平行線。(9)作中位線當(dāng)然在梯形的有關(guān)證明和計(jì)算中,添加的輔助線并不一定是固定不變的、單一的。通過(guò)輔助線這座橋梁,將梯形問(wèn)題化歸為平行四邊形問(wèn)題或三角形問(wèn)題來(lái)解決,這是解決問(wèn)題的關(guān)鍵。.圓中常用輔助線的添法在平面幾何中,解決與圓有關(guān)的問(wèn)題時(shí),常常需要添加適當(dāng)?shù)妮o助線,架起題設(shè)和結(jié)論間的橋梁,從而使問(wèn)題化難為易,順其自然地得到解決,因此,靈活掌握作輔助線的一般規(guī)律和常見(jiàn)方法,對(duì)提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力是大有幫助的。(1)見(jiàn)弦作弦心距有關(guān)弦的問(wèn)題,常作其弦心距(有時(shí)還須作出相應(yīng)的半徑),通過(guò)垂徑定理,來(lái)溝通題設(shè)與結(jié)論間的聯(lián)系。(2(2)見(jiàn)直徑作圓周角在題目中若已知圓的直徑,般是作直徑所對(duì)的圓周角,利用"直徑所對(duì)的圓周角是直角"這一特征來(lái)證明問(wèn)題。(3)見(jiàn)切線作半徑命題的條件中含有圓的切線,往往是連結(jié)過(guò)切點(diǎn)的半徑,利用"切線與半徑垂直"這一性質(zhì)來(lái)證明問(wèn)題。三、作輔助線的方法.中點(diǎn)、中位線,延線,平行線。如遇條件中有中點(diǎn),中線、中位線等,那么過(guò)中點(diǎn),延長(zhǎng)中線或中位線作輔助線,使延長(zhǎng)的某一段等于中線或中位線;另一種輔助線是過(guò)中點(diǎn)作已知邊或線段的平行線,以達(dá)到應(yīng)用某個(gè)定理或造成全等的目的。.垂線、分角線,翻轉(zhuǎn)全等連。如遇條件中,有垂線或角的平分線,可以把圖形按軸對(duì)稱的方法,并借助其他條件,而旋轉(zhuǎn)180度,得到全等形,,這時(shí)輔助線的做法就會(huì)應(yīng)運(yùn)而生。其對(duì)稱軸往往是垂線或角的平分線。.邊邊若相等,旋轉(zhuǎn)做實(shí)驗(yàn)。如遇條件中有多邊形的兩邊相等或兩角相等,有時(shí)邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角度,就可以得到全等形,這時(shí)輔助線的做法仍會(huì)應(yīng)運(yùn)而生。其對(duì)稱中心,因題而異,有時(shí)沒(méi)有中心。故可分“有心”和“無(wú)心”旋轉(zhuǎn)兩種。.造角、平、相似,和、差、積、商見(jiàn)。如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關(guān)。在制造兩個(gè)三角形相似時(shí),一般地,有兩種方法:第一,造一個(gè)輔助角等于已知角;第二,是把三角形中的某一線段進(jìn)行平移。故作歌訣:“造角、平、相似,和差積商見(jiàn)?!蓖辛忻锥ɡ砗兔啡~勞定理的證明輔助線分別是造角和平移的代表).切線連直徑,直角與半圓。如果條件中出現(xiàn)圓的切線,那么輔助線是過(guò)切點(diǎn)的直徑或半徑使出現(xiàn)直角;相反,條件中是圓的直徑,半徑,那么輔助線是過(guò)直徑(或半徑)端點(diǎn)的切線。即切線與直徑互為輔助線。如果條件中有直角三角形,那么作輔助線往往是斜邊為直徑作輔助圓,或半圓;相反,條件中有半圓,那么在直徑上找圓周角一一直角為輔助線。即直角與半圓互為輔助線。.弧、弦、弦心距;平行、等距、弦。如遇弧,則弧上的弦是輔助線;如遇弦,則弦心距為輔助線。如遇平行線,則平行線間的距離相等,距離為輔助線;反之,亦成立。如遇平行弦,則平行線間的距離相等,所夾的弦亦相等,距離和所夾的弦都可視為輔助線,反之,亦成立。有時(shí),圓周角,弦切角,圓心角,圓內(nèi)角和圓外角也存
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)代理服務(wù)協(xié)議書(shū)
- 金融行業(yè)合同信息管理方案
- 安全管理午托服務(wù)協(xié)議書(shū)
- 住宅小區(qū)預(yù)制管樁施工合同
- 急診科病歷快速審核制度
- 性病門(mén)診研究與數(shù)據(jù)管理制度
- 房地產(chǎn)開(kāi)發(fā)投標(biāo)管理制度
- 開(kāi)啟海外征程:2025-2030年傳統(tǒng)手工藝制作工作坊行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2017年Q3機(jī)油電商數(shù)據(jù)報(bào)告
- 學(xué)生讀書(shū)矯正儀產(chǎn)品入市調(diào)查研究報(bào)告
- xx學(xué)校未成年人性教育工作方案
- 廣開(kāi)(含解析)《形式與政策》你所從事的行業(yè)和工作《決定》中提出怎樣的改革舉措
- 什么是美術(shù)作品 課件-2024-2025學(xué)年高中美術(shù)湘美版(2019)美術(shù)鑒賞
- 2024-2030年組氨酸行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 教育信息化教學(xué)資源建設(shè)規(guī)劃
- 職業(yè)衛(wèi)生技術(shù)服務(wù)機(jī)構(gòu)檢測(cè)人員考試真題題庫(kù)
- 上海市交大附中附屬嘉定德富中學(xué)2024-2025學(xué)年九年級(jí)上學(xué)期期中考數(shù)學(xué)卷
- 屠宰場(chǎng)食品安全管理制度
- 部編版(2024秋)語(yǔ)文一年級(jí)上冊(cè) 6 .影子課件
- 2024秋期國(guó)家開(kāi)放大學(xué)??啤缎淌略V訟法學(xué)》一平臺(tái)在線形考(形考任務(wù)一至五)試題及答案
- 2024年大學(xué)生就業(yè)創(chuàng)業(yè)知識(shí)競(jìng)賽題庫(kù)及答案(共350題)
評(píng)論
0/150
提交評(píng)論