小學(xué)生奧數(shù)題目(有答案和分析)_第1頁
小學(xué)生奧數(shù)題目(有答案和分析)_第2頁
小學(xué)生奧數(shù)題目(有答案和分析)_第3頁
小學(xué)生奧數(shù)題目(有答案和分析)_第4頁
小學(xué)生奧數(shù)題目(有答案和分析)_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

PAGE小學(xué)奧數(shù)題目(精題詳解)1.甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時后,再打開排水管丙,問水池注滿還是要多少小時?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小時后進(jìn)水量1-45/80=35/80表示還要的進(jìn)水量35/80÷(9/80-1/10)=35表示還要35小時注滿答:5小時后還要35小時就能將水池注滿。2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由于彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九?,F(xiàn)在計劃16天修完這條水渠,且要求兩隊合作的天數(shù)盡可能少,那么兩隊要合作幾天?解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。又因為,要求“兩隊合作的天數(shù)盡可能少”,所以應(yīng)該讓做的快的甲多做,16天內(nèi)實在來不及的才應(yīng)該讓甲乙合作完成。只有這樣才能“兩隊合作的天數(shù)盡可能少”。設(shè)合作時間為x天,則甲獨做時間為(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成?,F(xiàn)在先請甲、丙合做2小時后,余下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?解:由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。根據(jù)“甲、丙合做2小時后,余下的乙還需做6小時完成”可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。所以1-9/10=1/10表示乙做6-4=2小時的工作量。1/10÷2=1/20表示乙的工作效率。1÷1/20=20小時表示乙單獨完成需要20小時。答:乙單獨完成需要20小時。4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那么恰好用整數(shù)天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那么完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?解:由題意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后結(jié)束必須如上所示,否則第二種做法就不比第一種多0.5天)1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)得到1/甲=1/乙×2又因為1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.師徒倆人加工同樣多的零件。當(dāng)師傅完成了1/2時,徒弟完成了120個。當(dāng)師傅完成了任務(wù)時,徒弟完成了4/5這批零件共有多少個?答案為300個120÷(4/5÷2)=300個可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一個池上裝有3根水管。甲管為進(jìn)水管,乙管為出水管,20分鐘可將滿池水放完,丙管也是出水管,30分鐘可將滿池水放完?,F(xiàn)在先打開甲管,當(dāng)水池水剛溢出時,打開乙,丙兩管用了18分鐘放完,當(dāng)打開甲管注滿水是,再打開乙管,而不開丙管,多少分鐘將水放完?答案45分鐘。1÷(1/20+1/30)=12表示乙丙合作將滿池水放完需要的分鐘數(shù)。1/12*(18-12)=1/12*6=1/2表示乙丙合作將漫池水放完后,還多放了6分鐘的水,也就是甲18分鐘進(jìn)的水。1/2÷18=1/36表示甲每分鐘進(jìn)水最后就是1÷(1/20-1/36)=45分鐘。8.某工程隊需要在規(guī)定日期內(nèi)完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規(guī)定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規(guī)定日期為幾天?答案為6天解:由“若乙隊去做,要超過規(guī)定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分別做全部的的工作時間比是2:3時間比的差是1份實際時間的差是3天所以3÷(3-2)×2=6天,就是甲的時間,也就是規(guī)定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細(xì)蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鐘后來點了,小芳將兩支蠟燭同時熄滅,發(fā)現(xiàn)粗蠟燭的長是細(xì)蠟燭的2倍,問:停電多少分鐘?答案為40分鐘。解:設(shè)停電了x分鐘根據(jù)題意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.雞兔同籠問題1.雞與兔共100只,雞的腿數(shù)比兔的腿數(shù)少28條,問雞與兔各有幾只?解:4*100=400,400-0=400假設(shè)都是兔子,一共有400只兔子的腳,那么雞的腳為0只,雞的腳比兔子的腳少400只。400-28=372實際雞的腳數(shù)比兔子的腳數(shù)只少28只,相差372只,這是為什么?4+2=6這是因為只要將一只兔子換成一只雞,兔子的總腳數(shù)就會減少4只(從400只變?yōu)?96只),雞的總腳數(shù)就會增加2只(從0只到2只),它們的相差數(shù)就會少4+2=6只(也就是原來的相差數(shù)是400-0=400,現(xiàn)在的相差數(shù)為396-2=394,相差數(shù)少了400-394=6)372÷6=62表示雞的只數(shù),也就是說因為假設(shè)中的100只兔子中有62只改為了雞,所以腳的相差數(shù)從400改為28,一共改了372只100-62=38表示兔的只數(shù)三.?dāng)?shù)字?jǐn)?shù)位問題1.把1至2005這2005個自然數(shù)依次寫下來得到一個多位數(shù)1234567892005,這個多位數(shù)除以9余數(shù)是多少?解:首先研究能被9整除的數(shù)的特點:如果各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)也能被9整除;如果各個位數(shù)字之和不能被9整除,那么得的余數(shù)就是這個數(shù)除以9得的余數(shù)。解題:1+2+3+4+5+6+7+8+9=45;45能被9整除依次類推:1~1999這些數(shù)的個位上的數(shù)字之和可以被9整除10~19,20~29……90~99這些數(shù)中十位上的數(shù)字都出現(xiàn)了10次,那么十位上的數(shù)字之和就是10+20+30+……+90=450它有能被9整除同樣的道理,100~900百位上的數(shù)字之和為4500同樣被9整除也就是說1~999這些連續(xù)的自然數(shù)的各個位上的數(shù)字之和可以被9整除;同樣的道理:1000~1999這些連續(xù)的自然數(shù)中百位、十位、個位上的數(shù)字之和可以被9整除(這里千位上的“1”還沒考慮,同時這里我們少200020012002200320042005從1000~1999千位上一共999個“1”的和是999,也能整除;200020012002200320042005的各位數(shù)字之和是27,也剛好整除。最后答案為余數(shù)為0。2.A和B是小于100的兩個非零的不同自然數(shù)。求A+B分之A-B的最小值...解:(A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B)前面的1不會變了,只需求后面的最小值,此時(A-B)/(A+B)最大。對于B/(A+B)取最小時,(A+B)/B取最大,問題轉(zhuǎn)化為求(A+B)/B的最大值。(A+B)/B=1+A/B,最大的可能性是A/B=99/1(A+B)/B=100(A-B)/(A+B)的最大值是:98/1003.已知A.B.C都是非0自然數(shù),A/2+B/4+C/16的近似值市6.4,那么它的準(zhǔn)確值是多少?答案為6.375或6.4375因為A/2+B/4+C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C為非0自然數(shù),因此8A+4B+C為一個整數(shù),可能是102,也有可能是103。當(dāng)是102時,102/16=6.375當(dāng)是103時,103/16=6.43754.一個三位數(shù)的各位數(shù)字之和是17.其中十位數(shù)字比個位數(shù)字大1.如果把這個三位數(shù)的百位數(shù)字與個位數(shù)字對調(diào),得到一個新的三位數(shù),則新的三位數(shù)比原三位數(shù)大198,求原數(shù).答案為476解:設(shè)原數(shù)個位為a,則十位為a+1,百位為16-2a根據(jù)題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,則a+1=716-2a=4答:原數(shù)為476。5.一個兩位數(shù),在它的前面寫上3,所組成的三位數(shù)比原兩位數(shù)的7倍多24,求原來的兩位數(shù).答案為24解:設(shè)該兩位數(shù)為a,則該三位數(shù)為300+a7a+24=300+aa=24答:該兩位數(shù)為24。6.把一個兩位數(shù)的個位數(shù)字與十位數(shù)字交換后得到一個新數(shù),它與原數(shù)相加,和恰好是某自然數(shù)的平方,這個和是多少?答案為121解:設(shè)原兩位數(shù)為10a+b,則新兩位數(shù)為10b+a它們的和就是10a因為這個和是一個平方數(shù),可以確定a+b=11因此這個和就是11×11=121答:它們的和為121。7.一個六位數(shù)的末位數(shù)字是2,如果把2移到首位,原數(shù)就是新數(shù)的3倍,求原數(shù).答案為85714解:設(shè)原六位數(shù)為abcde2,則新六位數(shù)為2abcde(字母上無法加橫線,請將整個看成一個六位數(shù))再設(shè)abcde(五位數(shù))為x,則原六位數(shù)就是10x+2,新六位數(shù)就是200000+x根據(jù)題意得,(200000+x)×3=10x+2解得x=85714所以原數(shù)就是857142答:原數(shù)為8571428.有一個四位數(shù),個位數(shù)字與百位數(shù)字的和是12,十位數(shù)字與千位數(shù)字的和是9,如果個位數(shù)字與百位數(shù)字互換,千位數(shù)字與十位數(shù)字互換,新數(shù)就比原數(shù)增加2376,求原數(shù).答案為3963解:設(shè)原四位數(shù)為abcd,則新數(shù)為cdab,且d+b=12,a+c=9根據(jù)“新數(shù)就比原數(shù)增加2376”可知abcd+2376=cdab,列豎式便于觀察abcd2376cdab根據(jù)d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。再觀察豎式中的個位,便可以知道只有當(dāng)d=3,b=9;或d=8,b=4時成立。先取d=3,b=9代入豎式的百位,可以確定十位上有進(jìn)位。根據(jù)a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。再觀察豎式中的十位,便可知只有當(dāng)c=6,a=3時成立。再代入豎式的千位,成立。得到:abcd=3963再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數(shù),所以不成立。9.有一個兩位數(shù),如果用它去除以個位數(shù)字,商為9余數(shù)為6,如果用這個兩位數(shù)除以個位數(shù)字與十位數(shù)字之和,則商為5余數(shù)為3,求這個兩位數(shù).解:設(shè)這個兩位數(shù)為ab10a+b=9b+610a+b=5(a+b)+3化簡得到一樣:5a+4b=3由于a、b均為一位整數(shù)得到a=3或7,b=3或8原數(shù)為33或78均可以10.如果現(xiàn)在是上午的10點21分,那么在經(jīng)過28799...99(一共有20個9)分鐘之后的時間將是幾點幾分?答案是10:20解:(28799……9(20個9)+1)/60/24整除,表示正好過了整數(shù)天,時間仍然還是10:21,因為事先計算時加了1分鐘,所以現(xiàn)在時間是10:20四.排列組合問題1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有()A768種B32種C24種D2的10次方中解:根據(jù)乘法原理,分兩步:第一步是把5對夫妻看作5個整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產(chǎn)生5個5個重復(fù),因此實際排法只有120÷5=24種。第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種綜合兩步,就有24×32=768種。2若把英語單詞hello的字母寫錯了,則可能出現(xiàn)的錯誤共有()A119種B36種C59種D48種解:5全排列5*4*3*2*1=120有兩個l所以120/2=60原來有一種正確的所以60-1=59五.容斥原理問題1.有100種赤貧.其中含鈣的有68種,含鐵的有43種,那么,同時含鈣和鐵的食品種類的最大值和最小值分別是()A43,25B32,25C32,15D43,11解:根據(jù)容斥原理最小值68+43-100=11最大值就是含鐵的有43種2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學(xué)生參加競賽,每個學(xué)生至少解出一道題;(2)在所有沒有解出第一題的學(xué)生中,解出第二題的人數(shù)是解出第三題的人數(shù)的2倍:(3)只解出第一題的學(xué)生比余下的學(xué)生中解出第一題的人數(shù)多1人;(4)只解出一道題的學(xué)生中,有一半沒有解出第一題,那么只解出第二題的學(xué)生人數(shù)是()A,5B,6C,7D,8解:根據(jù)“每個人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。分別設(shè)各類的人數(shù)為a1、a2、a3、a12、a13、a23、a123由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①由(2)知:a2+a23=(a3+a23)×2……②由(3)知:a12+a13+a123=a1-1……③由(4)知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后將④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:當(dāng)a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22又根據(jù)a23=a2-a3×2……⑤可知:a2>a3因此,符合條件的只有a2=6,a3=2。然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗所有條件均符。故只解出第二題的學(xué)生人數(shù)a2=6人。3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數(shù)的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那么這次考試的合格率至少是多少?答案:及格率至少為71%。假設(shè)一共有100人考試100-95=5100-80=20100-79=21100-74=26100-85=155+20+21+26+15=87(表示5題中有1題做錯的最多人數(shù))87÷3=29(表示5題中有3題做錯的最多人數(shù),即不及格的人數(shù)最多為29人)100-29=71(及格的最少人數(shù),其實都是全對的)及格率至少為71%六.抽屜原理、奇偶性問題1.一只布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍(lán)、黃四種,問最少要摸出幾只手套才能保證有3副同色的?解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2只手套,根據(jù)抽屜原理,最少要摸出5只手套。這時拿出1副同色的后4個抽屜中還剩3只手套。再根據(jù)抽屜原理,只要再摸出2只手套,又能保證有一副手套是同色的,以此類推。把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5只手套。這時拿出1副同色的后,4個抽屜中還剩下3只手套。根據(jù)抽屜原理,只要再摸出2只手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保證有3副同色的。2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?答案為21解:每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.當(dāng)有11人時,能保證至少有2人取得完全一樣:當(dāng)有21人時,才能保證到少有3人取得完全一樣.3.某盒子內(nèi)裝50只球,其中10只是紅色,10只是綠色,10只是黃色,10只是藍(lán)色,其余是白球和黑球,為了確保取出的球中至少包含有7只同色的球,問:最少必須從袋中取出多少只球?解:需要分情況討論,因為無法確定其中黑球與白球的個數(shù)。當(dāng)黑球或白球其中沒有大于或等于7個的,那么就是:6*4+10+1=35(個)如果黑球或白球其中有等于7個的,那么就是:6*5+3+1=34(個)如果黑球或白球其中有等于8個的,那么就是:6*5+2+1=33如果黑球或白球其中有等于9個的,那么就是:6*5+1+1=324.地上有四堆石子,石子數(shù)分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然后都放入第四堆中,那么,能否經(jīng)過若干次操作,使得這四堆石子的個數(shù)都相同?(如果能請說明具體操作,不能則要說明理由)不可能。因為總數(shù)為1+9+15+31=5656/4=1414是一個偶數(shù)而原來1、9、15、31都是奇數(shù),取出1個和放入3個也都是奇數(shù),奇數(shù)加減若干次奇數(shù)后,結(jié)果一定還是奇數(shù),不可能得到偶數(shù)(14個)。七.路程問題1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現(xiàn)在狗已跑出30米,馬開始追它。問:狗再跑多遠(yuǎn),馬可以追上它?解:根據(jù)“馬跑4步的距離狗跑7步”,可以設(shè)馬每步長為7x米,則狗每步長為4x米。根據(jù)“狗跑5步的時間馬跑3步”,可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米??梢缘贸鲴R與狗的速度比是21x:20x=21:20根據(jù)“現(xiàn)在狗已跑出30米”,可以知道狗與馬相差的路程是30米,他們相差的份數(shù)是21-20=1,現(xiàn)在求馬的21份是多少路程,就是30÷(21-20)×21=630米2.甲乙輛車同時從ab兩地相對開出,幾小時后再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求ab兩地相距多少千米?答案720千米。由“甲車行完全程要8小時,乙車行完全程要10小時”可知,相遇時甲行了10份,乙行了8份(總路程為18份),兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。3.在一個600米的環(huán)形跑道上,兄兩人同時從同一個起點按順時針方向跑步,兩人每隔12分鐘相遇一次,若兩個人速度不變,還是在原來出發(fā)點同時出發(fā),哥哥改為按逆時針方向跑,則兩人每隔4分鐘相遇一次,兩人跑一圈各要多少分鐘?答案為兩人跑一圈各要6分鐘和12分鐘。解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示較快的速度,方法是求和差問題中的較大數(shù)(150-50)/2=50,表示較慢的速度,方法是求和差問題中的較小數(shù)600÷100=6分鐘,表示跑的快者用的時間600/50=12分鐘,表示跑得慢者用的時間4.慢車車長125米,車速每秒行17米,快車車長140米,車速每秒行22米,慢車在前面行駛,快車從后面追上來,那么,快車從追上慢車的車尾到完全超過慢車需要多少時間?答案為53秒算式是(140+125)÷(22-17)=53秒可以這樣理解:“快車從追上慢車的車尾到完全超過慢車”就是快車車尾上的點追及慢車車頭的點,因此追及的路程應(yīng)該為兩個車長的和。5.在300米長的環(huán)形跑道上,甲乙兩個人同時同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,兩人起跑后的第一次相遇在起跑線前幾米?答案為100米300÷(5-4.4)=500秒,表示追及時間5×500=2500米,表示甲追到乙時所行的路程2500÷300=8圈……100米,表示甲追及總路程為8圈還多100米,就是在原來起跑線的前方100米處相遇。6.一個人在鐵道邊,聽見遠(yuǎn)處傳來的火車汽笛聲后,在經(jīng)過57秒火車經(jīng)過她前面,已知火車鳴笛時離他1360米,(軌道是直的),聲音每秒傳340米,求火車的速度(得出保留整數(shù))答案為22米/秒算式:1360÷(1360÷340+57)≈22米/秒關(guān)鍵理解:人在聽到聲音后57秒才車到,說明人聽到聲音時車已經(jīng)從發(fā)聲音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。7.獵犬發(fā)現(xiàn)在離它10米遠(yuǎn)的前方有一只奔跑著的野兔,馬上緊追上去,獵犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的動作快,獵犬跑2步的時間,兔子卻能跑3步,問獵犬至少跑多少米才能追上兔子。正確的答案是獵犬至少跑60米才能追上。解:由“獵犬跑5步的路程,兔子要跑9步”可知當(dāng)獵犬每步a米,則兔子每步5/9米。由“獵犬跑2步的時間,兔子卻能跑3步”可知同一時間,獵犬跑2a米,兔子可跑5/9a*3=5/3a米。從而可知獵犬與兔子的速度比是2a:5/3a=6:5,也就是說當(dāng)獵犬跑60米時候,兔子跑50米,本來相差的10米剛好追完8.AB兩地,甲乙兩人騎自行車行完全程所用時間的比是4:5,如果甲乙二人分別同時從AB兩地相對行使,40分鐘后兩人相遇,相遇后各自繼續(xù)前行,這樣,乙到達(dá)A地比甲到達(dá)B地要晚多少分鐘?答案:18分鐘解:設(shè)全程為1,甲的速度為x乙的速度為y列式40x+40y=1x:y=5:4得x=1/72y=1/90走完全程甲需72分鐘,乙需90分鐘故得解9.甲乙兩車同時從AB兩地相對開出。第一次相遇后兩車?yán)^續(xù)行駛,各自到達(dá)對方出發(fā)點后立即返回。第二次相遇時離B地的距離是AB全程的1/5。已知甲車在第一次相遇時行了120千米。AB兩地相距多少千米?答案是300千米。解:通過畫線段圖可知,兩個人第一次相遇時一共行了1個AB的路程,從開始到第二次相遇,一共又行了3個AB的路程,可以推算出甲、乙各自共所行的路程分別是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,從線段圖可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米從A地到B地,甲、乙兩人騎自行車分別需要4小時、6小時,現(xiàn)在甲乙分別AB兩地同時出發(fā)相向而行,相遇時距AB兩地中點2千米。如果二人分別至B地,A地后都立即折回。第二次相遇點第一次相遇點之間有()千米10.一船以同樣速度往返于兩地之間,它順流需要6小時;逆流8小時。如果水流速度是每小時2千米,求兩地間的距離?解:(1/6-1/8)÷2=1/48表示水速的分率2÷1/48=96千米表示總路程11.快車和慢車同時從甲乙兩地相對開出,快車每小時行33千米,相遇是已行了全程的七分之四,已知慢車行完全程需要8小時,求甲乙兩地的路程。解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3時間比為3:4所以快車行全程的時間為8/4*3=6小時6*33=198千米12.小華從甲地到乙地,3分之1騎車,3分之2乘車;從乙地返回甲地,5分之3騎車,5分之2乘車,結(jié)果慢了半小時.已知,騎車每小時12千米,乘車每小時30千米,問:甲乙兩地相距多少千米?解:把路程看成1,得到時間系數(shù)去時時間系數(shù):1/3÷12+2/3÷30返回時間系數(shù):3/5÷12+2/5÷30兩者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相當(dāng)于1/2小時去時時間:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)八.比例問題1.甲乙兩人在河邊釣魚,甲釣了三條,乙釣了兩條,正準(zhǔn)備吃,有一個人請求跟他們一起吃,于是三人將五條魚平分了,為了表示感謝,過路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。解:“三人將五條魚平分,客人拿出10元”,可以理解為五條魚總價值為30元,那么每條魚價值6元。又因為“甲釣了三條”,相當(dāng)于甲吃之前已經(jīng)出資3*6=18元,“乙釣了兩條”,相當(dāng)于乙吃之前已經(jīng)出資2*6=12元。而甲乙兩人吃了的價值都是10元,所以甲還可以收回18-10=8元乙還可以收回12-10=2元剛好就是客人出的錢。2.一種商品,今年的成本比去年增加了10分之1,但仍保持原售價,因此,每份利潤下降了5分之2,那么,今年這種商品的成本占售價的幾分之幾?答案22/25最好畫線段圖思考:把去年原來成本看成20份,利潤看成5份,則今年的成本提高1/10,就是22份,利潤下降了2/5,今年的利潤只有3份。增加的成本2份剛好是下降利潤的2份。售價都是25份。所以,今年的成本占售價的22/25。3.甲乙兩車分別從A.B兩地出發(fā),相向而行,出發(fā)時,甲.乙的速度比是5:4,相遇后,甲的速度減少20%,乙的速度增加20%,這樣,當(dāng)甲到達(dá)B地時,乙離A地還有10千米,那么A.B兩地相距多少千米?解:原來甲.乙的速度比是5:4現(xiàn)在的甲:5×(1-20%)=4現(xiàn)在的乙:4×(1+20%)4.8甲到B后,乙離A還有:5-4.8=0.2總路程:10÷0.2×(4+5)=450千米4.一個圓柱的底面周長減少25%,要使體積增加1/3,現(xiàn)在的高和原來的高度比是多少?答案為64:27解:根據(jù)“周長減少25%”,可知周長是原來的3/4,那么半徑也是原來的3/4,則面積是原來的9/16。根據(jù)“體積增加1/3”,可知體積是原來的4/3。體積÷底面積=高現(xiàn)在的高是4/3÷9/16=64/27,也就是說現(xiàn)在的高是原來的高的64/27或者現(xiàn)在的高:原來的高=64/27:1=64:275.某市場運(yùn)來香蕉、蘋果、橘子和梨四種水果其中橘子、蘋果共30噸香蕉、橘子和梨共45噸。橘子正好占總數(shù)的13分之2。一共運(yùn)來水果多少噸?第二題:答案為65噸橘子+蘋果=30噸香蕉+橘子+梨=45噸所以橘子+蘋果+香蕉+橘子+梨=75噸橘子÷(香蕉+蘋果+橘子+梨)=2/13說明:橘子是2份,香蕉+蘋果+橘子+梨是13份橘子+香蕉+蘋果+橘子+梨一共是2+13=15份過橋問題(1)1.一列火車經(jīng)過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?分析:這道題求的是通過時間。根據(jù)數(shù)量關(guān)系式,我們知道要想求通過時間,就要知道路程和速度。路程是用橋長加上車長?;疖嚨乃俣仁且阎獥l件??偮烦蹋海祝┩ㄟ^時間:(分鐘)答:這列火車通過長江大橋需要17.1分鐘。2.一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?分析與解答:這是一道求車速的過橋問題。我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件??梢杂靡阎獥l件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出??偮烦蹋海祝┗疖囁俣龋海祝┐穑哼@列火車每秒行30米。3.一列火車長240米,這列火車每秒行15米,從車頭進(jìn)山洞到全車出山洞共用20秒,山洞長多少米?分析與解答:火車過山洞和火車過橋的思路是一樣的?;疖囶^進(jìn)山洞就相當(dāng)于火車頭上橋;全車出洞就相當(dāng)于車尾下橋。這道題求山洞的長度也就相當(dāng)于求橋長,我們就必須知道總路程和車長,車長是已知條件,那么我們就要利用題中所給的車速和通過時間求出總路程??偮烦蹋荷蕉撮L:(米)答:這個山洞長60米。和倍問題1.秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?我們把秦奮的年齡作為1倍,“媽媽的年齡是秦奮的4倍”,這樣秦奮和媽媽年齡的和就相當(dāng)于秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那么求1倍是多少,接著再求4倍是多少?(1)秦奮和媽媽年齡倍數(shù)和是:4+1=5(倍)(2)秦奮的年齡:40÷5=8歲(3)媽媽的年齡:8×4=32歲綜合:40÷(4+1)=8歲8×4=32歲為了保證此題的正確,驗證(1)8+32=40歲(2)32÷8=4(倍)計算結(jié)果符合條件,所以解題正確。2.甲乙兩架飛機(jī)同時從機(jī)場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?已知兩架飛機(jī)3小時共飛行3600千米,就可以求出兩架飛機(jī)每小時飛行的航程,也就是兩架飛機(jī)的速度和??磮D可知,這個速度和相當(dāng)于乙飛機(jī)速度的3倍,這樣就可以求出乙飛機(jī)的速度,再根據(jù)乙飛機(jī)的速度求出甲飛機(jī)的速度。甲乙飛機(jī)的速度分別每小時行800千米、400千米。3.弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?思考:(1)哥哥在給弟弟課外書前后,題目中不變的數(shù)量是什么?(2)要想求哥哥給弟弟多少本課外書,需要知道什么條件?(3)如果把哥哥剩下的課外書看作1倍,那么這時(哥哥給弟弟課外書后)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?思考以上幾個問題的基礎(chǔ)上,再求哥哥應(yīng)該給弟弟多少本課外書。根據(jù)條件需要先求出哥哥剩下多少本課外書。如果我們把哥哥剩下的課外書看作1倍,那么這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數(shù)相當(dāng)于哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數(shù)始終是不變的數(shù)量。(1)兄弟倆共有課外書的數(shù)量是20+25=45。(2)哥哥給弟弟若干本課外書后,兄弟倆共有的倍數(shù)是2+1=3。(3)哥哥剩下的課外書的本數(shù)是45÷3=15。(4)哥哥給弟弟課外書的本數(shù)是25-15=10。試著列出綜合算式:4.甲乙兩個糧庫原來共存糧170噸,后來從甲庫運(yùn)出30噸,給乙?guī)爝\(yùn)進(jìn)10噸,這時甲庫存糧是乙?guī)齑婕Z的2倍,兩個糧庫原來各存糧多少噸?根據(jù)甲乙兩個糧庫原來共存糧170噸,后來從甲庫運(yùn)出30噸,給乙?guī)爝\(yùn)進(jìn)10噸,可求出這時甲、乙兩庫共存糧多少噸。根據(jù)“這時甲庫存糧是乙?guī)齑婕Z的2倍”,如果這時把乙?guī)齑婕Z作為1倍,那么甲、乙?guī)焖婕Z就相當(dāng)于乙存糧的3倍。于是求出這時乙?guī)齑婕Z多少噸,進(jìn)而可求出乙?guī)煸瓉泶婕Z多少噸。最后就可求出甲庫原來存糧多少噸。甲庫原存糧130噸,乙?guī)煸婕Z40噸。列方程組解應(yīng)用題(一)1.用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現(xiàn)有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?依據(jù)題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數(shù),一個是制盒底的鐵皮張數(shù),這樣就可以用兩個未知數(shù)表示,要求出這兩個未知數(shù),就要從題目中找出兩個等量關(guān)系,列出兩個方程,組在一起,就是方程組。兩個等量關(guān)系是:A做盒身張數(shù)+做盒底的張數(shù)=鐵皮總張數(shù)B制出的盒身數(shù)×2=制出的盒底數(shù)用86張白鐵皮做盒身,64張白鐵皮做盒底。奇數(shù)與偶數(shù)(一)其實,在日常生活中同學(xué)們就已經(jīng)接觸了很多的奇數(shù)、偶數(shù)。凡是能被2整除的數(shù)叫偶數(shù),大于零的偶數(shù)又叫雙數(shù);凡是不能被2整除的數(shù)叫奇數(shù),大于零的奇數(shù)又叫單數(shù)。因為偶數(shù)是2的倍數(shù),所以通常用這個式子來表示偶數(shù)(這里是整數(shù))。因為任何奇數(shù)除以2其余數(shù)都是1,所以通常用式子來表示奇數(shù)(這里是整數(shù))。奇數(shù)和偶數(shù)有許多性質(zhì),常用的有:性質(zhì)1兩個偶數(shù)的和或者差仍然是偶數(shù)。例如:8+4=12,8-4=4等。兩個奇數(shù)的和或差也是偶數(shù)。例如:9+3=12,9-3=6等。奇數(shù)與偶數(shù)的和或差是奇數(shù)。例如:9+4=13,9-4=5等。單數(shù)個奇數(shù)的和是奇,雙數(shù)個奇數(shù)的和是偶數(shù),幾個偶數(shù)的和仍是偶數(shù)。性質(zhì)2奇數(shù)與奇數(shù)的積是奇數(shù)。偶數(shù)與整數(shù)的積是偶數(shù)。性質(zhì)3任何一個奇數(shù)一定不等于任何一個偶數(shù)。1.有5張撲克牌,畫面向上。小明每次翻轉(zhuǎn)其中的4張,那么,他能在翻動若干次后,使5張牌的畫面都向下嗎?同學(xué)們可以試驗一下,只有將一張牌翻動奇數(shù)次,才能使它的畫面由向上變?yōu)橄蛳隆R胧?張牌的畫面都向下,那么每張牌都要翻動奇數(shù)次。5個奇數(shù)的和是奇數(shù),所以翻動的總張數(shù)為奇數(shù)時才能使5張牌的牌面都向下。而小明每次翻動4張,不管翻多少次,翻動的總張數(shù)都是偶數(shù)。所以無論他翻動多少次,都不能使5張牌畫面都向下。2.甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一個棋子,這個棋子是什么顏色的?不論李平從甲盒中拿出兩個什么樣的棋子,他總會把一個棋子放入甲盒。所以他每拿一次,甲盒子中的棋子數(shù)就減少一個,所以他拿180+181-1=360次后,甲盒里只剩下一個棋子。如果他拿出的是兩個黑子,那么甲盒中的黑子數(shù)就減少兩個。否則甲盒子中的黑子數(shù)不變。也就是說,李平每次從甲盒子拿出的黑子數(shù)都是偶數(shù)。由于181是奇數(shù),奇數(shù)減偶數(shù)等于奇數(shù)。所以,甲盒中剩下的黑子數(shù)應(yīng)是奇數(shù),而不大于1的奇數(shù)只有1,所以甲盒里剩下的一個棋子應(yīng)該是黑子。奧賽專題--稱球問題例1有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。解:依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。2有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。解:第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。例3把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結(jié)論。如B<C,仿照B>C的情況也可得出結(jié)論。(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什么?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結(jié)論;如B<C,仿前也可得出結(jié)論。(3)若A<B,類似于A>B的情況,可分析得出結(jié)論。奧賽專題--抽屜原理【例1】一個小組共有13名同學(xué),其中至少有2名同學(xué)同一個月過生日。為什么?【分析】每年里共有12個月,任何一個人的生日,一定在其中的某一個月。如果把這12個月看成12個“抽屜”,把13名同學(xué)的生日看成13只“蘋果”,把13只蘋果放進(jìn)12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學(xué)在同一個月過生日。【例2】任意4個自然數(shù),其中至少有兩個數(shù)的差是3的倍數(shù)。這是為什么?【分析與解】首先我們要弄清這樣一條規(guī)律:如果兩個自然數(shù)除以3的余數(shù)相同,那么這兩個自然數(shù)的差是3的倍數(shù)。而任何一個自然數(shù)被3除的余數(shù),或者是0,或者是1,或者是2,根據(jù)這三種情況,可以把自然數(shù)分成3類,這3種類型就是我們要制造的3個“抽屜”。我們把4個數(shù)看作“蘋果”,根據(jù)抽屜原理,必定有一個抽屜里至少有2個數(shù)。換句話說,4個自然數(shù)分成3類,至少有兩個是同一類。既然是同一類,那么這兩個數(shù)被3除的余數(shù)就一定相同。所以,任意4個自然數(shù),至少有2個自然數(shù)的差是3的倍數(shù)?!纠?】有規(guī)格尺寸相同的5種顏色的襪子各15只混裝在箱內(nèi),試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?【分析與解】試想一下,從箱中取出6只、9只襪子,能配成3雙襪子嗎?回答是否定的。按5種顏色制作5個抽屜,根據(jù)抽屜原理1,只要取出6只襪子就總有一只抽屜里裝2只,這2只就可配成一雙。拿走這一雙,尚剩4只,如果再補(bǔ)進(jìn)2只又成6只,再根據(jù)抽屜原理1,又可配成一雙拿走。如果再補(bǔ)進(jìn)2只,又可取得第3雙。所以,至少要取6+2+2=10只襪子,就一定會配成3雙。思考:1.能用抽屜原理2,直接得到結(jié)果嗎?2.把題中的要求改為3雙不同色襪子,至少應(yīng)取出多少只?3.把題中的要求改為3雙同色襪子,又如何?【例4】一個布袋中有35個同樣大小的木球,其中白、黃、紅三種顏色球各有10個,另外還有3個藍(lán)色球、2個綠色球,試問一次至少取出多少個球,才能保證取出的球中至少有4個是同一顏色的球?【分析與解】從最“不利”的取出情況入手。最不利的情況是首先取出的5個球中,有3個是藍(lán)色球、2個綠色球。接下來,把白、黃、紅三色看作三個抽屜,由于這三種顏色球相等均超過4個,所以,根據(jù)抽屜原理2,只要取出的球數(shù)多于(4-1)×3=9個,即至少應(yīng)取出10個球,就可以保證取出的球至少有4個是同一抽屜(同一顏色)里的球。故總共至少應(yīng)取出10+5=15個球,才能符合要求。思考:把題中要求改為4個不同色,或者是兩兩同色,情形又如何?當(dāng)我們遇到“判別具有某種事物的性質(zhì)有沒有,至少有幾個”這樣的問題時,想到它——抽屜原理,這是你的一條“決勝”之路。奧賽專題--還原問題【例1】某人去銀行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。這時他的存折上還剩1250元。他原有存款多少元?【分析】從上面那個“重新包裝”的事例中,我們應(yīng)受到啟發(fā):要想還原,就得反過來做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,從而“余下的一半”是1250+100=1350(元)余下的錢(余下一半錢的2倍)是:1350×2=2700(元)用同樣道理可算出“存款的一半”和“原有存款”。綜合算式是:[(1250+100)×2+50]×2=5500(元)還原問題的一般特點是:已知對某個數(shù)按照一定的順序施行四則運(yùn)算的結(jié)果,或把一定數(shù)量的物品增加或減少的結(jié)果,要求最初(運(yùn)算前或增減變化前)的數(shù)量。解還原問題,通常應(yīng)當(dāng)按照與運(yùn)算或增減變化相反的順序,進(jìn)行相應(yīng)的逆運(yùn)算。【例2】有26塊磚,兄弟2人爭著去挑,弟弟搶在前面,剛擺好磚,哥哥趕來了。哥哥看弟弟挑得太多,就拿來一半給自己。弟弟覺得自己能行,又從哥哥那里拿來一半。哥哥不讓,弟弟只好給哥哥5塊,這樣哥哥比弟弟多挑2塊。問最初弟弟準(zhǔn)備挑多少塊?【分析】我們得先算出最后哥哥、弟弟各挑多少塊。只要解一個“和差問題”就知道:哥哥挑“(26+2)÷2=14”塊,弟弟挑“26-14=12”塊。提示:解還原問題所作的相應(yīng)的“逆運(yùn)算”是指:加法用減法還原,減法用加法還原,乘法用除法還原,除法用乘法還原,并且原來是加(減)幾,還原時應(yīng)為減(加)幾,原來是乘(除)以幾,還原時應(yīng)為除(乘)以幾。對于一些比較復(fù)雜的還原問題,要學(xué)會列表,借助表格倒推,既能理清數(shù)量關(guān)系,又便于驗算。奧賽專題--雞兔同籠問題例1雞兔同籠,頭共46,足共128,雞兔各幾只?[分析]:如果46只都是兔,一共應(yīng)有4×46=184只腳,這和已知的128只腳相比多了184-128=56只腳.如果用一只雞來置換一只兔,就要減少4-2=2(只)腳.那么,46只兔里應(yīng)該換進(jìn)幾只雞才能使56只腳的差數(shù)就沒有了呢?顯然,56÷2=28,只要用28只雞去置換28只兔就行了.所以,雞的只數(shù)就是28,兔的只數(shù)是46-28=18。解:①雞有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:雞有28只,免有18只。例2雞與兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?[分析]:這個例題與前面例題是有區(qū)別的,沒有給出它們腳數(shù)的總和,而是給出了它們腳數(shù)的差.這又如何解答呢?假設(shè)100只全是雞,那么腳的總數(shù)是2×100=200(只)這時兔的腳數(shù)為0,雞腳比兔腳多200只,而實際上雞腳比兔腳多80只.因此,雞腳與兔腳的差數(shù)比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一只兔換成雞,雞的腳數(shù)將增加2只,兔的腳數(shù)減少4只.那么,雞腳與兔腳的差數(shù)增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。解:(2×100-80)÷(2+4)=20(只)。100-20=80(只)。答:雞與兔分別有80只和20只。例3紅英小學(xué)三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?[分析1]我們設(shè)想,如果條件中三個班人數(shù)同樣多,那么,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設(shè)三個班人數(shù)同樣多來分析求解。結(jié)合下圖可以想,假設(shè)二班、三班人數(shù)和一班人數(shù)相同,以一班為標(biāo)準(zhǔn),則二班人數(shù)要比實際人數(shù)少5人.三班人數(shù)要比實際人數(shù)多7-5=2(人).那么,請你算一算,假設(shè)二班、三班人數(shù)和一班人數(shù)同樣多,三個班總?cè)藬?shù)應(yīng)該是多少?解法1:一班:[135-5+(7-5)]÷3=132÷3=44(人)二班:44+5=49(人)三班:49-7=42(人)答:三年級一班、二班、三班分別有44人、49人和42人。[分析2]假設(shè)一、三班人數(shù)和二班人數(shù)同樣多,那么,一班人數(shù)比實際要多5人,而三班要比實際人數(shù)多7人.這時的總?cè)藬?shù)又該是多少?解法2:(135+5+7)÷3=147÷3=49(人)49-5=44(人),49-7=42(人)答:三年級一班、二班、三班分別有44人、49人和42人。例4劉老師帶了41名同學(xué)去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?[分析]我們分步來考慮:①假設(shè)租的10條船都是大船,那么船上應(yīng)該坐6×10=60(人)。②假設(shè)后的總?cè)藬?shù)比實際人數(shù)多了60-(41+1)=18(人),多的原因是把小船坐的4人都假設(shè)成坐6人。③一條小船當(dāng)成大船多出2人,多出的18人是把18÷2=9(條)小船當(dāng)成大船。解:[6×10-(41+1)÷(6-4)=18÷2=9(條)10-9=1(條)答:有9條小船,1條大船。例5有蜘蛛、蜻蜓、蟬三種動物共18只,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?[分析]這是在雞兔同籠基礎(chǔ)上發(fā)展變化的問題.觀察數(shù)字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數(shù)入手,求出蜘蛛的只數(shù).我們假設(shè)三種動物都是6條腿,則總腿數(shù)為6×18=108(條),所差118-108=10(條),必然是由于少算了蜘蛛的腿數(shù)而造成的.所以,應(yīng)有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數(shù).再從翅膀數(shù)入手,假設(shè)13只都是蟬,則總翅膀數(shù)1×13=13(對),比實際數(shù)少20-13=7(對),這是由于蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數(shù)可求7÷(2-1)=7(只).解:①假設(shè)蜘蛛也是6條腿,三種動物共有多少條腿?6×18=108(條)②有蜘蛛多少只?(118-108)÷(8-6)=5(只)③蜻蜒、蟬共有多少只?18-5=13(只)④假設(shè)蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)⑤蜻蜒多少只?(20-13)÷2-1)=7(只)答:蜻蜒有7只.牛吃草問題1.一個牧場,草每天勻速生長,每頭牛每天吃的草量相同,17頭牛30天可以將草吃完,19頭牛只需要24天就可以將草吃完,現(xiàn)有一群牛,吃了6天后,賣掉4頭牛,余下的牛再吃2天就將草吃完。問沒有賣掉4頭牛之前,這一群牛一共有多少頭?17×30=510(頭)19×24=456(頭)(510-456)÷(30-24)=9(頭)30×17-30×9=240(頭)(6+2)×9=72(頭)240+72+2×4=320(頭)320÷(6+2)=40(頭)2.一個蓄水池,每分鐘流入4立方米水。如果打開5個水龍頭,2小時半就把水池中的水放光;如果打開8個水龍頭,1小時半就把池中的水放光,現(xiàn)打開13個水龍頭,問要多少時間才能把水池中的水放光(每個水龍頭每小時放走的水量相同)?3.甲、乙、丙3個倉庫,各存放著同樣數(shù)量的化肥,甲倉庫用皮帶輸送機(jī)一臺和12個工人,需要5小時才能把甲倉庫搬空;乙倉庫用一臺皮帶輸送機(jī)和28個工人,需要3小時才能把乙倉庫搬空;丙倉庫有兩臺皮帶輸送機(jī),如果要求2小時把丙倉庫搬空,同時還需要多少工人(皮帶輸送機(jī)的功效相同,每個工人每小時的搬運(yùn)量相同,皮帶輸送機(jī)與工人同時往處搬運(yùn)化肥)?1×5=5(臺)12×5=60(人)28×3=84(人)1×3=3(臺)84-60=24(人)24÷(5-3)=12(人)1×5×12=60(人)60+12×5=120(人)2×2×12=48(人)(120-48)÷2=36(人)4.快、中、慢3輛車同時從同一地點出發(fā),沿同一條公路追趕前面的一個騎車的小偷,這3輛車分別用6分鐘、10分鐘、12分鐘,追上小偷,現(xiàn)在知道快車的速度是每小時24千米,中車的速度是每小時20千米,問慢車的速度是多少?。奧賽專題--列車過橋問題1、一列長300米的火車以每分1080米的速度通過一座大橋。從車頭開上橋到車尾離開橋一共需3分。這座大橋長多少米?2、某人步行的速度為每秒2米.一列火車從后面開來,超過他用了10秒.已知火車長90米.求火車的速度。3、.在環(huán)形跑道上,兩人都按順時針方向跑時,每12分鐘相遇一次,如果兩人速度不變,其中一人改成按逆時針方向跑,每隔4分鐘相遇一次,問兩人各跑一圈需要幾分鐘?4、一列長300米的火車,以每分1080米的速度通過一座長為940米的在橋,從車頭開上橋到車尾離開橋需要多少分鐘?5、一列火車通過530米的橋需40秒鐘,以同樣的速度穿過380米的山洞需30秒鐘。求這列火車的速度是多少米/秒,全長是多少米?6、鐵路沿線的電桿間隔是40米,某旅客在運(yùn)行的火車中,從看到第一根電線桿到看到第51根電線桿正好是2分鐘,火車每小時行多少千米。7、一個人站在鐵道旁,聽見行近來的火車汽笛聲后,再過57秒鐘火車經(jīng)過他面前.已知火車汽笛時離他1360米;(軌道是筆直的)聲速是每秒鐘340米,求火車的速度?(得數(shù)保留整數(shù))一列450米長的貨車,以每秒12米的速度通過一座570米長的鐵橋,需要幾秒鐘?8、現(xiàn)有兩列火車同時同方向齊頭行進(jìn),行12秒后快車超過慢車。快車每秒行18米,慢車每秒行10米。如果這兩列火車車尾相齊同時同方向行進(jìn),則9秒后快車超過慢車,求兩列火車的車身長。9、李明和張憶在300米的環(huán)形跑道上練習(xí)跑步,李明每秒跑5米,張憶每秒跑3米,兩人同時從起跑點出發(fā)同向而行,問出發(fā)后李明第一次追上張憶時,張憶跑了多少米?10、速度為快、中、慢的三輛汽車同時從同一地點出發(fā),沿同一公路追趕前面一個騎車人,這三輛車分別用6分鐘、10分鐘、12分鐘追上騎車人,現(xiàn)在知道快車每小時24千米,中速車每小時20千米,那么慢車每小時行多少千米?(選做題)11、周長為400米的圓形跑道上,有相距100米的A、B兩點,甲、乙兩人分別從A、B兩點同時相背而跑,兩人相遇后,乙立刻轉(zhuǎn)身與甲同向而跑,當(dāng)甲跑到A時,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不變,那么追上乙時,甲共跑了多少米(從出發(fā)時算起)?奧賽專題--平均數(shù)問題1蔡琛在期末考試中,政治、語文、數(shù)學(xué)、英語、生物五科的平均分是89分.政治、數(shù)學(xué)兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應(yīng)是多少分?2果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什錦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.問:什錦糖每千克多少元?3甲乙兩塊棉田,平均畝產(chǎn)籽棉185斤.甲棉田有5畝,平均畝產(chǎn)籽棉203斤;乙棉田平均畝產(chǎn)籽棉170斤,乙棉田有多少畝?4已知八個連續(xù)奇數(shù)的和是144,求這八個連續(xù)奇數(shù)。新華小學(xué)訂了若干張《中國少年報》,如果三張三張地數(shù),余數(shù)為1張;五張五張地數(shù),余數(shù)為2張;七張七張地數(shù),余數(shù)為2張。新華小學(xué)訂了多少張《中國年呢?商店里三天共賣出1026米布。第二天賣出的是第一天的2倍;第三天賣出的是第二天的3倍。求三天各賣出多少米布?1.分?jǐn)?shù)的四則混和運(yùn)算:求1/3+1/15+1/35+1/63+1/99+1/143簡便方法:1/3=1×(1/3)=1/2(1-1/3)1/15=(1/3)×(1/5)=1/2(1/3-1/5)1/35=(1/5)×(1/7)=1/2(1/5-1/7)1/63=(1/7)×(1/9)=1/2(1/7-1/9)1/99=(1/9)×(1/11)=1/2(1/9-1/11)1/143=(1/11)×(1/13)=1/2(1/11-1/13)所以1/3+1/15+1/35+1/63+1/99+1/143=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+1/2(1/11-1/13)提公因式1/2得1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13)可觀察到式子中間部分都抵消,最后只剩下1/2(1-1/13)=6/13也就是1/3+1/15+1/35+1/63+1/99+1/143=6/13.概念題型2.八分之a(chǎn)、十分之b、十五分之c是三個最簡分?jǐn)?shù),已知三個分?jǐn)?shù)的積是二分之一,求這三個分?jǐn)?shù)各是多少?a/8×b/10×c/15=abc/1200因為它們的積是1/2所以abc=600把600分解質(zhì)因數(shù)600=2×2×5×3×2×5又因為它們的分母分別是8、10、15而且是最簡分?jǐn)?shù),它們的分子里依次不能有2、2和5、3和5因此,只能是5×5=25,3,2×2×2=8、所以這三個分?jǐn)?shù)分別是:25/8、3/10、8/15分類討論題型:3.兩根同樣長的繩子,第一根剪下五分之三米,第二根剪下五分之三,哪根剩下的多?當(dāng)繩子大于一米時,第一根剩下的多,當(dāng)繩子等于一米時,兩根剩下的一樣多,當(dāng)繩子小于一米時,第二根剩下的多公約公倍和同余1.今天是星期六,再過1000天是星期幾?2.已知兩個自然數(shù)a和b(a>b),已知a和b除以13的余數(shù)分別是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余數(shù)。3.2100除以一個兩位數(shù)得到的余數(shù)是56,求這個兩位數(shù)。4.被除數(shù)、除數(shù)、商與余數(shù)之和是903,已知除數(shù)是35,余數(shù)是2,求被除數(shù)。5.用一個整數(shù)去除345和543所得的余數(shù)相同,且商相差9,求這個數(shù)。6.有一個整數(shù),用它去除312,231,123得到的三個余數(shù)之和是41,求這個數(shù)。1.答:根據(jù)題意不難看出,這個大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的最大公約數(shù).所以,這個大班的小朋友最多有36人.2.答:與上題類似,依題意,正方體的棱長應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126.所以,至少需要這種長方體木塊126×126×126÷(9×6×7)=5292(塊)3、答:此數(shù)為28。方法同例題。4、答:這兩個數(shù)為4與120,或8與60,或12與40,或20與24。方法同例題。5答:所求的兩個數(shù)為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。6、答:因為1+2+…+9=5×9,所以無論這些九位數(shù)的值如何,它們的數(shù)字之和總可以被9整除,因而9是所有這些九位數(shù)的公約數(shù).現(xiàn)任取這些九位數(shù)中的兩個相差9的數(shù),如413798256和413798265。7、答:1925=5×5×7×11兩個商為5和11,1925÷5=385;1925÷11=175答:根據(jù)1。題意不難看出,這個大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的最大公約數(shù).所以,這個大班的小朋友最多有36人.2.答:與上題類似,依題意,正方體的棱長應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126.所以,至少需要這種長方體木塊126×126×126÷(9×6×7)=5292(塊)3.答:此數(shù)為28。方法同例題。4.答:這兩個數(shù)為4與120,或8與60,或12與40,或20與24。方法同例題。5.答:所求的兩個數(shù)為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。6.答:因為1+2+…+9=5×9,所以無論這些九位數(shù)的值如何,它們的數(shù)字之和總可以被9整除,因而9是所有這些九位數(shù)的公約數(shù).現(xiàn)任取這些九位數(shù)中的兩個相差9的數(shù),如413798256和413798265。答:1925=5×5×7×11兩個商為5和11,1925÷5=385;1925÷11=1757.幼兒園有糖115顆、餅干148塊、桔子74個,平均分給大班小朋友,結(jié)果糖多出7顆,餅干多出4塊,桔子多出2個.這個大班的小朋友最多有幾個人?8.用長是9厘米、寬是6厘米、高是7厘米的長方體木塊疊成一個正方體,至少需要這種長方體木塊多少塊.9.已知某數(shù)與24的最大公約數(shù)為4,最小公倍數(shù)為168,求此數(shù)。10.已知兩個自然數(shù)的最大公約數(shù)為4,最小公倍數(shù)為120,求這兩個數(shù)。11.已知兩個自然數(shù)的和為165,它們的最大公約數(shù)為15,求這兩個數(shù)。選做題12.把1,2,3,4,5,6,7,8,9九個數(shù)依不同的次序排列,可以得到362880個不同的九位數(shù),求所有這些九位數(shù)的最大公約數(shù).13.兩個整數(shù)的最小公倍數(shù)是1925,這兩個整數(shù)分別除以他們的最大公約數(shù),得到兩個商的和是16,請寫出這兩個整數(shù)(第七屆華杯賽試題)。(必做)第五講奇數(shù)與偶數(shù)及奇偶性的應(yīng)用發(fā)布日期:[2007-4-2217:23:11]共閱[376]次1.能否在下式中填入適當(dāng)?shù)摹?”,“-”,使等式成立?9□8□7□6□5□4□3□2□1=282.在a、b、c三個數(shù)中,有一個是2003,一個是2004,一個是2005。問(a-1)(b-2)(c-3)是奇數(shù)還是偶數(shù)。3.用代表整數(shù)的字母a、b、c、d寫成等式組:a×b×c×d-a=1983a×b×c×d-b=1993a×b×c×d-c=2003a×b×c×d-d=2013試說明:符合條件的整數(shù)a、b、c、d是否存在。4.有一串?dāng)?shù),最前面的四個數(shù)依次是1、9、8、7.從第五個數(shù)起,每一個數(shù)都是它前面相鄰四個數(shù)之和的個位數(shù)字.問:在這一串?dāng)?shù)中,會依次出現(xiàn)1、9、8、8這四個數(shù)嗎?5.任意改變某一個三位數(shù)的各位數(shù)字的順序得到一個新數(shù).試證新數(shù)與原數(shù)之和不能等于999。最大公約數(shù)和最小公倍數(shù)(閆老師班)發(fā)布日期:[2007-10-1619:01:58]共閱[154]次1.甲、乙兩地相距465千米,一輛汽車從甲地開往乙地,以每小時60千米的速度行駛一段后,每小時加速15千米,共用了7小時到達(dá)乙地。每小時60千米的速度行駛了幾小時?2.籠中裝有雞和兔若干只,共100只腳,若將雞換成兔,兔換成雞,則共92只腳?;\中原有兔、雞各多少只?3.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀。蟬有6條腿和1對翅膀。現(xiàn)在這三種小蟲共18只,有118條腿和20對翅膀,每種小蟲各幾只?4.學(xué)雷鋒活動中,同學(xué)們共做好事240件,大同學(xué)每人做好事8件,小同學(xué)每人做好事3件,他們平均每人做好事6件。參加這次活動的小同學(xué)有多少人?5.某班42個同學(xué)參加植樹,男生平均每人種3棵,女生平均每人種2棵,已知男生比女生多種56棵,男、女生各有多少人?答案:1.解:設(shè)每小時60千米的速度行駛了x小時。60x+(60+15)(7-x)=46560x+525-75x=465525-15x=46515x=60x=4答:每小時60千米的速度行駛了4小時。2.解:兔換成雞,每只就減少了2只腳。(100-92)/2=4只,兔子有4只。(100-4*4)/2=42只答:兔子有4只,雞有42只。3.解:設(shè)蜘蛛18只,蜻蜓y只,蟬z只。三種小蟲共18只,得:x+y+z=18……a式有118條腿,得:8x+6y+6z=118……b式有20對翅膀,得:2y+z=20……c式將b式-6*a式,得:8x+6y+6z-6(x+y+z)=118-6*182x=10x=5蜘蛛有5只,則蜻蜓和蟬共有18-5=13只。再將z化為(13-y)只。再代入c式,得:2y+13-y=20y=7蜻蜓有7只。蟬有18-5-7=6只。答:蜘蛛有5只,蜻蜓有7只,蟬有6只。4.解:同學(xué)們共做好事240件,他們平均每人做好事6件,說明他們共有240/6=40人設(shè)大同學(xué)有x人,小同學(xué)有(40-x)人。8x+3(40-x)=2408x+120-3x=2405x+120=2405x=120x=2440-x=16答:大同學(xué)有24人,小同學(xué)有16人。5.解:設(shè)男生x人,女生(42-x)人。3x-2(42-x)=563x+2x-84=565x=140x=2842-x=14答:男生28人,女生14人公約公倍和同余發(fā)布日期:[2007-7-2821:00:27]共閱[150]次1.今天是星期六,再過1000天是星期幾?2.已知兩個自然數(shù)a和b(a>b),已知a和b除以13的余數(shù)分別是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余數(shù)。3.2100除以一個兩位數(shù)得到的余數(shù)是56,求這個兩位數(shù)。4.被除數(shù)、除數(shù)、商與余數(shù)之和是903,已知除數(shù)是35,余數(shù)是2,求被除數(shù)。5.用一個整數(shù)去除345和543所得的余數(shù)相同,且商相差9,求這個數(shù)。6.有一個整數(shù),用它去除312,231,123得到的三個余數(shù)之和是41,求這個數(shù)。1.答:根據(jù)題意不難看出,這個大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的最大公約數(shù).所以,這個大班的小朋友最多有36人.2.答:與上題類似,依題意,正方體的棱長應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126.所以,至少需要這種長方體木塊126×126×126÷(9×6×7)=5292(塊)3、答:此數(shù)為28。方法同例題。4、答:這兩個數(shù)為4與120,或8與60,或12與40,或20與24。方法同例題。5答:所求的兩個數(shù)為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。6、答:因為1+2+…+9=5×9,所以無論這些九位數(shù)的值如何,它們的數(shù)字之和總可以被9整除,因而9是所有這些九位數(shù)的公約數(shù).現(xiàn)任取這些九位數(shù)中的兩個相差9的數(shù),如413798256和413798265。7、答:1925=5×5×7×11兩個商為5和11,1925÷5=385;1925÷11=175答:根據(jù)1。題意不難看出,這個大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的最大公約數(shù).所以,這個大班的小朋友最多有36人.2.答:與上題類似,依題意,正方體的棱長應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126.所以,至少需要這種長方體木塊126×126×126÷(9×6×7)=5292(塊)3.答:此數(shù)為28。方法同例題。4.答:這兩個數(shù)為4與120,或8與60,或12與40,或20與24。方法同例題。5.答:所求的兩個數(shù)為15與150,或30與135,或45與120,或60與105,或75與90。方法同例題。6.答:因為1+2+…+9=5×9,所以無論這些九位數(shù)的值如何,它們的數(shù)字之和總可以被9整除,因而9是所有這些九位數(shù)的公約數(shù).現(xiàn)任取這些九位數(shù)中的兩個相差9的數(shù),如413798256和413798265。答:1925=5×5×7×11兩個商為5和11,1925÷5=385;1925÷11=1757.幼兒園有糖115顆、餅干148塊、桔子74個,平均分給大班小朋友,結(jié)果糖多出7顆,餅干多出4塊,桔子多出2個.這個大班的小朋友最多有幾個人?8.用長是9厘米、寬是6厘米、高是7厘米的長方體木塊疊成一個正方體,至少需要這種長方體木塊多少塊.9.已知某數(shù)與24的最大公約數(shù)為4,最小公倍數(shù)為168,求此數(shù)。10.已知兩個自然數(shù)的最大公約數(shù)為4,最小公倍數(shù)為120,求這兩個數(shù)。11.已知兩個自然數(shù)的和為165,它們的最大公約數(shù)為15,求這兩個數(shù)。選做題12.把1,2,3,4,5,6,7,8,9九個數(shù)依不同的次序排列,可以得到362880個不同的九位數(shù),求所有這些九位數(shù)的最大公約數(shù).13.兩個整數(shù)的最小公倍數(shù)是1925,這兩個整數(shù)分別除以他們的最大公約數(shù),得到兩個商的和是16,請寫出這兩個整數(shù)(第七屆華杯賽試題)。(必做)第五講奇數(shù)與偶數(shù)及奇偶性的應(yīng)用發(fā)布日期:[2007-4-2217:23:11]共閱[376]次1.能否在下式中填入適當(dāng)?shù)摹?”,“-”,使等式成立?9□8□7□6□5□4□3□2□1=282.在a、b、c三個數(shù)中,有一個是2003,一個是2004,一個是2005。問(a-1)(b-2)(c-3)是奇數(shù)還是偶數(shù)。3.用代表整數(shù)的字母a、b、c、d寫成等式組:a×b×c×d-a=1983a×b×c×d-b=1993a×b×c×d-c=2003a×b×c×d-d=2013試說明:符合條件的整數(shù)a、b、c、d是否存在。4.有一串?dāng)?shù),最前面的四個數(shù)依次是1、9、8、7.從第五個數(shù)起,每一個數(shù)都是它前面相鄰四個數(shù)之和的個位數(shù)字.問:在這一串?dāng)?shù)中,會依次出現(xiàn)1、9、8、8這四個數(shù)嗎?5.任意改變某一個三位數(shù)的各位數(shù)字的順序得到一個新數(shù).試證新數(shù)與原數(shù)之和不能等于999。最大公約數(shù)和最小公倍數(shù)(閆老師班)發(fā)布日期:[2007-10-1619:01:58]共閱[154]次一、填空1、用96朵紅花和72朵白花做成花束,如果每束花里紅花的朵數(shù)相同,白花的朵數(shù)也相同,每束花里最少有朵花?2、7月6日,寶珠從避暑山莊打電話向拴柱問好,賈六來看望拴柱,喜子在打掃房間。如果喜子每隔3天打掃一次,寶珠每隔6天打一次電話,賈六每隔5天看望一次,至少經(jīng)過天,問好、看望、打掃這三件事才能同時發(fā)生。3、一筐梨,按每份兩個梨分多1個,每份3個梨分多2個,每份5個梨分多4個,則筐里至少有個梨。二、解答題1、為了搞試驗,將一塊長為75米,寬為60米的長方形土地分為面積相等的小正方形土地,那么小正方形土地的面積最大是多少平方米?2、兩個數(shù)的最大公約數(shù)是18,最小公倍數(shù)是180,兩個數(shù)相差54,求這兩個數(shù)各是多少?3、有一種新型的電子鐘,每到正點和半點都響一次鈴,每過9分鐘亮一次燈,如果中午12點時,它既響了鈴,又亮了燈,那么下一次既響鈴又亮燈要到什么時間?回答者:知道100℃周期問題1.有249朵花,按5朵紅花,9朵黃花,13綠花的順序排列著,最后一朵是什么顏色的花?根據(jù)題意可知,者寫按5紅,9黃,13綠的順序輪流排列著,即5+9+13=27(朵)花為一個周期,不斷循環(huán)。因為249除以27等于9余6,也就是經(jīng)過9個周期還余下6朵花,是黃花。2.1除以7等于0.142857142857小數(shù)點后的第一百位是多少?142857,有6個數(shù)在循環(huán),就用100除以6等于16余4,是8://.xj-zx/Article/aoshuNo6/一、填空題1.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?2.某人步行的速度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論