版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.2018年1月份,菏澤市市區(qū)一周空氣質(zhì)量報告中某項污染指數(shù)的數(shù)據(jù)是41,45,41,44,40,42,41,這組數(shù)據(jù)的中位數(shù)、眾數(shù)分別是()A.42,41 B.41,42 C.41,41 D.42,452.甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結果兩人同時到達C地.求兩人的平均速度,為解決此問題,設乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是()A. B. C. D.3.在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是()A.﹣3.5 B.2 C.0 D.﹣44.如圖,數(shù)軸上有M、N、P、Q四個點,其中點P所表示的數(shù)為a,則數(shù)-3a所對應的點可能是()A.M B.N C.P D.Q5.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是6.已知一個布袋里裝有2個紅球,3個白球和a個黃球,這些球除顏色外其余都相同.若從該布袋里任意摸出1個球,是紅球的概率為,則a等于()A. B. C. D.7.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)8.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直9.如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E給好落在AB的延長線上,連接AD,下列結論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE10.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結論的個數(shù)是()A.4個 B.3個 C.2個 D.1個二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當點E從點A運動到點C時,點P經(jīng)過點的路徑長為__.12.已知|x|=3,y2=16,xy<0,則x﹣y=_____.13.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.14.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.15.如圖,已知直線與軸、軸相交于、兩點,與的圖象相交于、兩點,連接、.給出下列結論:①;②;③;④不等式的解集是或.其中正確結論的序號是__________.16.將點P(﹣1,3)繞原點順時針旋轉180°后坐標變?yōu)開____.三、解答題(共8題,共72分)17.(8分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?18.(8分)某商場以每件30元的價格購進一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù)關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數(shù)關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.19.(8分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結果保留根號)20.(8分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發(fā)射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結果保留小數(shù)點后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)21.(8分)如圖,在平面直角坐標系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點,已知A(2,5).求:b和k的值;△OAB的面積.22.(10分)如圖,已知拋物線經(jīng)過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經(jīng)過點,求平移后所得圖象的函數(shù)關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.23.(12分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當α=45°時,求證:=;(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關系:=_____.24.今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.評估成績n(分)
評定等級
頻數(shù)
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根據(jù)以上信息解答下列問題:(1)求m的值;(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大??;(結果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個.【詳解】從小到大排列此數(shù)據(jù)為:40,1,1,1,42,44,45,數(shù)據(jù)1出現(xiàn)了三次最多為眾數(shù),1處在第4位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求.如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).2、A【解析】設乙騎自行車的平均速度為x千米/時,則甲騎自行車的平均速度為(x+2)千米/時,根據(jù)題意可得等量關系:甲騎110千米所用時間=乙騎100千米所用時間,根據(jù)等量關系可列出方程即可.解:設乙騎自行車的平均速度為x千米/時,由題意得:=,故選A.3、D【解析】
根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小進行比較即可【詳解】在實數(shù)﹣3.5、2、0、﹣4中,最小的數(shù)是﹣4,故選D.【點睛】掌握實數(shù)比較大小的法則4、A【解析】解:∵點P所表示的數(shù)為a,點P在數(shù)軸的右邊,∴-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍,∴數(shù)-3a所對應的點可能是M,故選A.點睛:本題考查了數(shù)軸,解決本題的關鍵是判斷-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍.5、C【解析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)6、A【解析】
此題考查了概率公式的應用.注意用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.根據(jù)題意得:,解得:a=1,經(jīng)檢驗,a=1是原分式方程的解,故本題選A.7、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉的性質(zhì)得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質(zhì).求解時,注意等邊三角形三線合一的性質(zhì).8、D【解析】
根據(jù)菱形,平行四邊形,正方形的性質(zhì)定理判斷即可.【詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.9、C【解析】
利用旋轉的性質(zhì)得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質(zhì)可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當∠E=30°時,BC⊥DE.故選C.【點睛】本題考查了旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等邊三角形的性質(zhì).10、D【解析】①因為二次函數(shù)的對稱軸是直線x=﹣1,由圖象可得左交點的橫坐標大于﹣3,小于﹣2,所以﹣=﹣1,可得b=2a,當x=﹣3時,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以①選項結論正確;②∵拋物線的對稱軸是直線x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此選項結論不正確;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴關于x的一元二次方程ax2+(b﹣1)x+c=0有實數(shù)根;④由圖象得:當x>﹣1時,y隨x的增大而減小,∵當k為常數(shù)時,0≤k2≤k2+1,∴當x=k2的值大于x=k2+1的函數(shù)值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此選項結論不正確;所以正確結論的個數(shù)是1個,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、π.【解析】
由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點P的路徑是一段弧,由弧線長公式就可以得出結論.【詳解】:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當AE=CF時,點P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點P的路徑是l=,
故答案為.【點睛】本題考查了等邊三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,弧線長公式的運用,解題的關鍵是證明三角形全等.12、±3【解析】分析:本題是絕對值、平方根和有理數(shù)減法的綜合試題,同時本題還滲透了分類討論的數(shù)學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數(shù)學思想,求解時要注意分類討論.13、【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.
故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.14、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關鍵.15、②③④【解析】分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì)得到k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y(tǒng)=-mx-m,求得P(-1,0),Q(0,-m),根據(jù)三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據(jù)圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點,∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點,求兩直線的交點坐標,三角形面積的計算,正確的理解題意是解題的關鍵.16、(1,﹣3)【解析】
畫出平面直角坐標系,然后作出點P繞原點O順時針旋轉180°的點P′的位置,再根據(jù)平面直角坐標系寫出坐標即可.【詳解】如圖所示:點P(-1,3)繞原點O順時針旋轉180°后的對應點P′的坐標為(1,-3).
故答案是:(1,-3).【點睛】考查了坐標與圖形變化-旋轉,作出圖形,利用數(shù)形結合的思想求解更簡便,形象直觀.三、解答題(共8題,共72分)17、-2,-1,0,1【解析】
解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).18、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達到500元.【解析】
(1)此題可以按等量關系“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數(shù)關系式,并由售價大于進價,且銷售量大于零求得自變量的取值范圍.(2)根據(jù)(1)所得的函數(shù)關系式,利用配方法求二次函數(shù)的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達到500元.【點睛】本題考查了二次函數(shù)在實際生活中的應用,解答本題的關鍵是根據(jù)等量關系:“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數(shù)關系式,另外要熟練掌握二次函數(shù)求最值的方法.19、米.【解析】試題分析:根據(jù)矩形的性質(zhì),得到對邊相等,設這條河寬為x米,則根據(jù)特殊角的三角函數(shù)值,可以表示出ED和BF,根據(jù)EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四邊形AECF為矩形,∴EC=AF,AE=CF.設這條河寬為x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴這條河的寬為米.20、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的長求出OA,在Rt△BOC,由∠BCO的大小和OC的長求出OA,而AB=OB-0A,即可得到答案?!驹斀狻坑深}意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長為6.0km,AB的長為1.7km.【點睛】本題主要考查三角函數(shù)的知識。21、(1)b=3,k=10;(2)S△AOB=.【解析】(1)由直線y=x+b與雙曲線y=相交于A、B兩點,A(2,5),即可得到結論;(2)過A作AD⊥x軸于D,BE⊥x軸于E,根據(jù)y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根據(jù)三角形的面積公式即可得到結論.解:()把代入.∴∴.把代入,∴,∴.()∵,.∴時,,∴,.∴.又∵,∴.22、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標為或.【解析】分析:(1)利用待定系數(shù)法,將點A,B的坐標代入解析式即可求得;(2)根據(jù)旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標,根據(jù)圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經(jīng)過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉后點的坐標為.當時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設點坐標為,將配方得,∴其對稱軸為.由題得B1(0,1).①當時,如圖①,∵,∴,∴,此時,∴點的坐標為.②當時,如圖②,同理可得,∴,此時,∴點的坐標為.綜上,點的坐標為或.點睛:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯(lián)系密切,需要學生認真審題.此題考查了二次函數(shù)與一次函數(shù)的綜合知識,解題的關鍵是要注意數(shù)形結合思想的應用.23、1【解析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024基于非對稱的數(shù)據(jù)加密算法技術規(guī)范
- 電冰箱、空調(diào)器安裝與維護電子教案 2.1 認識選用電冰箱
- 演藝消費季音樂節(jié)(演唱會)類演出項目結項審核申報書
- 2024年重慶市九龍坡區(qū)楊家坪中學小升初數(shù)學試卷
- 河南省鄭州市第七高級中學2024-2025學年高二上學期期中考試生物試題(含答案)
- 2024-2025學年內(nèi)蒙古鄂爾多斯市西四旗高二(上)期中數(shù)學試卷(含答案)
- 尿道注射器產(chǎn)業(yè)運行及前景預測報告
- 座位名卡市場發(fā)展預測和趨勢分析
- 發(fā)光或機械信號板市場發(fā)展預測和趨勢分析
- 人教版英語八年級下冊 Unit 8 刷題系列
- 解讀國有企業(yè)管理人員處分條例課件
- 九年級上冊第三單元道德與法治《文明與家園》單元整體教學設計
- 2024消防維保投標文件模板
- 遙感地學應用04-水體和海洋遙感
- DL∕T 2014-2019 電力信息化項目后評價
- (中級)機修鉗工職業(yè)鑒定考試題庫(濃縮400題)
- 安全治本攻堅三年行動方案及重大事故隱患會議紀要(完整版)
- 東營山東東營市中醫(yī)院(東營市傳染病醫(yī)院東營市精神衛(wèi)生中心)招聘46人筆試歷年典型考題及考點附答案解析
- 高級流行病學與醫(yī)學統(tǒng)計學智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學
- 油煙管道系統(tǒng)清洗合同
- 2024陸上風電場工程可行性研究報告編制規(guī)程
評論
0/150
提交評論