版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.2.已知實數(shù)、滿足不等式組,則的最大值為()A. B. C. D.3.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i4.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.5.若,則,,,的大小關系為()A. B.C. D.6.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.87.若,則下列不等式不能成立的是()A. B. C. D.8.若為虛數(shù)單位,則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.110.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.11.某人用隨機模擬的方法估計無理數(shù)的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計出這些豆子在曲線上方的有粒,則無理數(shù)的估計值是()A. B. C. D.12.設是虛數(shù)單位,,,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.14.已知函數(shù)的圖象在處的切線斜率為,則______.15.實數(shù),滿足,如果目標函數(shù)的最小值為,則的最小值為_______.16.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.18.(12分)已知函數(shù),的最大值為.求實數(shù)b的值;當時,討論函數(shù)的單調(diào)性;當時,令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域為?若存在,求實數(shù)k的取值范圍;若不存在,請說明理由.19.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設分別是數(shù)列的前項和,且,,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.21.(12分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).22.(10分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.2、A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標函數(shù),化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數(shù)取得最大值,又由,解得,所以目標函數(shù)的最大值為,故選A.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎題.3、A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復數(shù)的概念,屬于基礎題.4、B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.5、D【解析】因為,所以,因為,,所以,.綜上;故選D.6、B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.7、B【解析】
根據(jù)不等式的性質(zhì)對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.8、B【解析】
由共軛復數(shù)的定義得到,通過三角函數(shù)值的正負,以及復數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內(nèi)對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數(shù)的概念及復數(shù)的幾何意義,考查了學生概念理解,數(shù)形結(jié)合,數(shù)學運算的能力,屬于基礎題.9、B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.10、D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導數(shù)與函數(shù)單調(diào)性的關系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當,若為增函數(shù),則①,
當,若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應用,注意分段函數(shù)單調(diào)性的性質(zhì).11、D【解析】
利用定積分計算出矩形中位于曲線上方區(qū)域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數(shù)的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區(qū)域的面積,考查計算能力,屬于中等題.12、C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把當成進行運算.二、填空題:本題共4小題,每小題5分,共20分。13、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).14、【解析】
先對函數(shù)f(x)求導,再根據(jù)圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據(jù)曲線上在某點切線方程的斜率求參數(shù)的問題,屬于基礎題.15、【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的最小值為,確定出的值,進而確定出C點坐標,結(jié)合目標函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線的截距最大時,取得最小值,此時直線為,作出直線,交于A點,由圖象可知,目標函數(shù)在該點取得最小值,所以直線也過A點,由,得,代入,得,所以點C的坐標為.等價于點與原點連線的斜率,所以當點為點C時,取得最小值,最小值為,故答案為:.【點睛】該題考查的是有關線性規(guī)劃的問題,在解題的過程中,注意正確畫出約束條件對應的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標函數(shù)的意義求得最優(yōu)解,屬于中檔題目.16、32【解析】
由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導,確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關鍵.18、(1);(2)時,在單調(diào)增;時,在單調(diào)遞減,在單調(diào)遞增;時,同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導數(shù)研究函數(shù)的單調(diào)性,可得當時,取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,進而可得結(jié)果.詳解:(1)由題意得,令,解得,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調(diào)增②若,而,故,則當時,;當及時,故在單調(diào)遞減,在單調(diào)遞增.③若,即,同理在單調(diào)遞減,在單調(diào)遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,所以恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.假設存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,即方程在區(qū)間內(nèi)是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.點睛:本題主要考查利用導數(shù)判斷函數(shù)的單調(diào)性以及函數(shù)的最值值,屬于難題.求函數(shù)極值、最值的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小.19、(1)(2)直線l的斜率為或【解析】
(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標表示,及韋達定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.20、(1);(2)【解析】
方案一:(1)根據(jù)等差數(shù)列的通項公式及前n項和公式列方程組,求出和,從而寫出數(shù)列的通項公式;(2)由第(1)題的結(jié)論,寫出數(shù)列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數(shù)列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數(shù)列都是等差數(shù)列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)∵數(shù)列都是等差數(shù)列,且.,解得,,.綜上,(2)同方案一【點睛】本題考查了等差數(shù)列的通項公式、前n項和公式的應用,考查了分組求和、等比求和及裂項相消法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工聘用協(xié)議書2023
- 個人租房的合同協(xié)議書范本10篇
- 再婚離婚協(xié)議書2025年
- 重癥肌無力樣綜合征病因介紹
- T-CIECCPA 011-2024 高雜貴金屬冶煉渣資源化處理技術(shù)規(guī)范
- 中考歷史復習第一部分教材知識速查模塊2中國近代史第1講列強的侵略與中國人民的抗爭公開課一等獎省
- (2024)汽車內(nèi)飾用品項目可行性研究報告寫作范本(一)
- 2023年金屬門窗及類似制品項目融資計劃書
- 2023年紡織產(chǎn)品項目籌資方案
- 《開環(huán)伯德圖的繪制》課件
- 分數(shù)的初步認識(單元測試)-2024-2025學年三年級上冊數(shù)學期末復習 人教版
- 機械CAD、CAM-形考任務一-國開-參考資料
- 電氣專業(yè)述職報告
- 腰椎病的中醫(yī)護理查房
- 2024年湖南省公務員考試《行測》真題及答案解析
- 成都錦城學院《操作系統(tǒng)與nux管理》2022-2023學年期末試卷
- 《弧弦圓心角》說課稿課件
- 中職班級建設三年規(guī)劃方案
- 河南省鄭州市2023-2024學年高二上學期期末考試 物理 含解析
- 2024年中級安全工程師《(建筑施工)安全生產(chǎn)專業(yè)實務》考試題庫(含答案)
- 弘揚抗戰(zhàn)精神課程設計
評論
0/150
提交評論