




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Section12
AirQualityForecastingTools1工作報告BackgroundForecastingtoolsprovideinformationtohelpguidetheforecastingprocess.Forecastersuseavarietyofdataproducts,information,tools,andexperiencetopredictairquality.Forecastingtoolsarebuiltuponanunderstandingoftheprocessesthatcontrolairquality.Forecastingtools:SubjectiveObjectiveMoreforecastingtools=betterresults.2工作報告BackgroundPersistenceClimatologyCriteriaStatisticalClassificationand
RegressionTree(CART)RegressionNeuralnetworksNumericalmodelingPhenomenologicaland
experiencePredictorvariablesFewerresources,loweraccuracy
Moreresources,potentialforhigheraccuracy3工作報告SelectingPredictorVariables(2of3)Selectobservedandforecastedvariables.Predictorvariablescanconsistofobservedvariables(e.g.,yesterday’sozoneorPM2.5concentration)andforecastedvariables(e.g.,
tomorrow’smaximumtemperature).Makesurethatpredictorvariablesareeasilyobtainablefromreliablesource(s)andcanbeforecast.Consideruncertaintyinmeasurements,particularlymeasurementsofPM.5工作報告SelectingPredictorVariables(3of3)Beginwithasmanyas50to100predictorvariables.Usestatisticalanalysistechniquestoidentifythemostimportantvariables.Clusteranalysisisusedtopartitiondataintosimilaranddissimilarsubsets.Unique(i.e.,dissimilar)variablesshouldbeusedtoavoidredundancy.Correlationanalysisisusedtoevaluatetherelationshipbetweenthepredictand(i.e.,
pollutantlevels)andvariouspredictorvariables.Step-wiseregressionisanautomaticprocedurethatallowsthestatisticalsoftware(SAS,
Statgraphics,Systat,etc.)toselectthemostimportantvariablesandgeneratethebestregressionequation.Humanselection
isanothermeansofselectingthemostimportantpredictorvariables.6工作報告CommonOzonePredictorVariablesVariableUsefulnessConditionforHighOzoneMaximumtemperatureHighlycorrelatedwithozoneandozoneformationHighMorningwindspeedAssociatedwithdispersionanddilutionofozoneprecursorpollutantsLowAfternoonwindspeedAssociatedwithtransportofozone-CloudcoverControlssolarradiation,whichinfluencesphotochemistryFewRelativehumiditySurrogateforcloudcoverLow500-mbheightIndicatorofthesynoptic-scaleweatherpatternHigh850-mbtemperatureSurrogateforverticalmixingHighPressuregradientsCauseswinds/ventilationLowLengthofdayAmountofsolarradiationLongerDayofweekEmissionsdifferences-MorningNOxconcentrationOzoneprecursorlevelsHighPreviousday’speakozoneconcentrationPersistence,carry-overHighAloftwindspeedanddirectionTransportfromupwindregion-7工作報告AssemblingadatasetDeterminewhatdatatouseWhatdatatypesareneededandavailableWhatsitesarerepresentativeWhatairqualitymonitoringnetwork(s)touse(forexample,continuousversuspassiveorfilter)Whattypeofmeteorologicaldataareavailable(surface,upper-air,satellite,etc.)Howmuchdataisavailable(years)9工作報告AssemblingadatasetAcquirehistoricaldataincludingHourlypollutantdataDailymaximumpollutantmetrics,suchasPeak1-hrozonePeak8-hraverageozone24-hraveragePM2.5orPM10HourlymeteorologicaldataRadiosondedataModeldataMeteorologicaloutputsMM5/TAPMOtherSurfaceandupper-airweatherchartsHYSPLITtrajectories10工作報告AssemblingadatasetQualitycontroldataCheckforoutliersLookattheminimumandmaximumvaluesforeachfield;aretheyreasonable?Checkrateofchangebetweenrecordsateachextreme.TimestampsHasalldatabeenproperlymatchedbytime?TimeseriesplotscanhelpidentifyproblemsshiftingfromUTCtoLST.MissingdataIsthesameidentifierusedforeachfield?I.e.,–999.UnitsAreunitsconsistentamongdifferentdatasets?I.e.,m/sorknotsforwindspeeds.ValidationcodesArevalidationcodesconsistentamongdifferentdatasets?Dothevalidationcodesmatchthedatavalues?I.e.,aredatavalues
of–999flaggedasmissing?11工作報告ForecastingToolsandMethods
(2of2)ForeachtoolWhatisit?Howdoesitwork?ExampleHowtodevelopit?StrengthsLimitationsOzone=WS*10.2+…13工作報告Persistence(1of2)Persistencemeanstocontinuesteadilyinsomestate.Tomorrow’spollutantconcentrationwillbethesameasToday’s.Bestusedasastartingpointandtohelpguideotherforecastingmethods.Itshouldnotbeusedastheonlyforecastingmethod.Modifyingapersistenceforecastwithforecastingexperiencecanhelpimproveforecastaccuracy.MondayTuesdayWednesdayUnhealthyUnhealthyUnhealthyPersistenceforecast14工作報告Persistence(2of2)Sevenhighozonedays(red)Fiveofthesedaysoccurredafterahighday(*)Probabilityofhighozoneoccurringonthedayafterahighozonedayis5outof7daysProbabilityofalowozonedayoccurringafteralowozonedayare20outof22daysPersistencemethodwouldbeaccurate25outof29days,or86%ofthetime
DayOzone(ppb)DayOzone(ppb)18016120*25017110*350188047019805802070610021607110*2250890*23509802470108025801180268012702770138028801490296015110*3070Peak8-hrozoneconcentrationsforasamplecity15工作報告Persistence–LimitationsPersistenceforecastingcannotPredictthestartandendofapollutionepisodeWorkwellunderchangingweatherconditionswhenaccurateairqualitypredictionscanbemostcritical17工作報告ClimatologyClimatologyisthestudyofaverageandextremeweatherorairqualityconditionsatagivenlocation.Climatologycanhelpforecastersboundandguidetheirairqualitypredictions.18工作報告Climatology–ExampleAveragenumberofdayspermonthwithozoneineachAQIcategoryforSacramento,California19工作報告DevelopingClimatologyConsideremissionschangesForexample,fuelreformulationItmaybeusefultodividetheclimatetablesorchartsinto“before”and“after”periodsformajoremissionschanges.McCarthyetal.,200521工作報告ClimatologyHighpollutiondaysoccurmostoftenonWednesdayHighpollutiondaysoccurleastoftenatthebeginningoftheweekDayofweekdistributionofhighPM2.5days22工作報告ClimatologyDistributionofhighozonedaysbyupper-airweatherpattern23工作報告Climatology–LimitationsClimatologyIsnotastand-aloneforecastingmethodbutatooltocomplementotherforecastmethodsDoesnotaccountforabruptchangesinemissionspatternssuchasthoseassociatedwiththeuseofreformulatedfuel,alargechangeinpopulation,forestfires,etc.Requiresenoughdata(years)toestablishrealistictrends25工作報告CriteriaUsesthresholdvalues(criteria)ofmeteorologicalorairqualityvariablestoforecastpollutantconcentrationsForexample,iftemperature>27°Cand
wind<2m/sthenozonewillbeintheUnhealthyAQIcategorySometimescalled“rulesofthumb”CommonlyusedinmanyforecastingprogramsasaprimaryforecastingmethodorcombinedwithothermethodsBestsuitedtohelpforecasthighpollutionorlowpollutionevents,orpollutioninaparticularairqualityindexcategoryrangeratherthananexactconcentration26工作報告DevelopingCriteria(2of2)
Determinethethresholdvalueforeachparameterthatdistinguisheshighandlowpollutantconcentrations.Forexample,createscatterplotsofpollutantvs.weatherparameters.Useanindependentdataset(i.e.,adatasetnotusedfordevelopment)toevaluatetheselectedcriteria.29工作報告Criteria–StrengthsEasytooperateandmodifyAnobjectivemethodthatalleviatespotentialhumanbiasesComplementsotherforecastingmethods30工作報告Criteria–LimitationsSelectionofthevariablesandtheirassociatedthresholdsissubjective.Itisnotwellsuitedforpredictingexactpollutantconcentrations.31工作報告Classificationand
RegressionTree(CART)CARTisastatisticalproceduredesignedtoclassifydataintodissimilargroups.Similartocriteriamethod;however,itisobjectivelydeveloped.CARTenablesaforecastertodevelopadecisiontreetopredictpollutantconcentrationsbasedonpredictorvariables(usuallyweather)thatarewellcorrelatedwithpollutantconcentrations.AnexampleCarttreeformaximumozonepredictionforthegreaterAthensarea.32工作報告Classificationand
RegressionTree(CART)Ozone(Low–High)
ModeratetoHighModeratetoLowTemplowTemphighWS-strongModerateModerateHighLowWS-calmWS-calmWS-light33工作報告CART–HowItWorks
(1of2)ThestatisticalsoftwaredeterminesthepredictorvariablesandthethresholdcutoffvaluesbyReadingalargedatasetwithmanypossiblepredictorvariablesIdentifyingthevariableswiththehighestcorrelationwiththepollutantContinuingtheprocessofsplittingthedatasetandgrowingthetreeuntilthedataineachgrouparesufficientlyuniform34工作報告CART–HowItWorks(2of2)ToforecastpollutantconcentrationsusingCARTsStepthroughthetreestartingatthefirstsplitanddeterminewhichofthetwogroupsthedatapointbelongsin,basedonthecut-pointforthatvariable;Continuethroughthetreeinthismanneruntilanendnodeisreached.Themeanconcentrationshownintheendnodeistheforecastedconcentration.Note,slightdifferencesinthevaluesofpredictedvariablescanproducesignificantchangesinpredictedpollutantlevelswhenthevalueisnearthethreshold.35工作報告
Variables:T850-12Z850MBtempDELTAP-thepressuredifferencebetweenthebaseand
topoftheinversionMI0-Synopticweatherpotential(scalefrom1-lowto5-high).FAVGTMP-24-houraveragetemperatureatLaPazFAVGRH-24-houraveragerelativehumidityatLaPaz.CARTclassificationPM10inSantiago,Chile
NodexVariableandcriteriaSTD=StandarddeviationAvg=AveragePM10(ug/m3)N=numberofcasesin nodeCassmassi,1999Istheforecastedtemperatureat850mb10.5°C?YesNoCART–Example36工作報告DevelopingCARTDeterminetheimportantprocessesthatinfluencepollution.Selectvariablesthatproperlyrepresenttheimportantprocesses.Createamulti-yeardatasetoftheselectedvariables.ChooserecentyearsthatarerepresentativeofthecurrentemissionprofileReserveasubsetofthedataforindependentevaluation,butensureitrepresentsallconditionsBesurevariablesareforecastedUsestatisticalsoftwaretocreateadecisiontree.Evaluatethedecisiontreeusingtheindependentdataset.37工作報告CART–StrengthsRequireslittleexpertisetooperateonadailybasis;runsquickly.Complementsothersubjectiveforecastingmethods.Allowsdifferentiationbetweendayswithsimilarpollutantconcentrationsifthepollutantconcentrationsarearesultofdifferentprocesses.SincePMcanformthroughmultiplepathways,thisadvantageofCARTcanbeparticularlyimportanttoPMforecasting.38工作報告CART–LimitationsRequiresamodestamountofexpertiseandefforttodevelop.Slightchangesinpredictedvariablesmayproducelargechangesinthepredictedconcentrations.CARTmaynotpredictpollutantconcentrationsduringperiodsofunusualemissionspatternsduetoholidaysorotherevents.CARTcriteriaandstatisticalapproachesmayrequireperiodicupdatesasemissionsourcesandlandusechanges.39工作報告RegressionEquations–
HowTheyWork(1of5)RegressionequationsaredevelopedtodescribetherelationshipbetweenpollutantconcentrationandotherpredictorvariablesForlinearregression,thecommonformis
y=mx+bAtright,maximumtemperature(Tmax)isagoodpredictorforpeakozone[O3]=1.92*Tmax–86.8r=0.77r2=0.5940工作報告Morepredictorscanbeadded(“stepwiseregression”)sothattheequationlookslikethis: y=m1x1+m2x2+m3x3+……mnxn+bEachpredictor(xn)hasitsown“weight”(mn)andthecombinationmayleadtobetterforecastaccuracy.Themixofpredictorsvariesfromplacetoplace.RegressionEquations–
HowTheyWork(2of5)41工作報告OzoneRegressionEquationforColumbus,Ohio8hrO3=exp(2.421+0.024*Tmax+0.003*Trange-0.006*WS1to6+0.007*00ZV925-0.004*RHSfc00-0.002*00ZWS500)VariableDescriptionTmaxMaximumtemperatureinoFTrangeDailytemperaturerangeWS1to6Averagewindspeedfrom1p.m.to
6p.m.inknots00ZV925Vcomponentofthe925-mbwindat00ZRHSfc00Relativehumidityatthesurfaceat00Z00ZWS500Windspeedat500mbat00ZRegressionEquations–
HowTheyWork(3of5)42工作報告Thevariouspredictorsarenotequallyweighted,somearemoreimportantthanothers.Itisessentialtoidentifythestrongestpredictorsandworkhardestongettingthosepredictionsright.Tmaxvs.O3PreviousdayO3vs.O3WindSpeedvs.O3RegressionEquations–
HowTheyWork(4of5)43工作報告Inanexamplecase,mostofthevarianceinO3isexplainedbyTmax(60%),withtheadditionalpredictorsadding~15%.Overall,75%ofthevarianceinobservedO3
isexplainedbytheforecastmodel.Ourjobasforecastersistofillintheadditional25%usingothertools.AccumulatedexplainedvarianceRegressionEquations–
HowTheyWork(5of5)44工作報告DevelopingRegression(1of2)Determinetheimportantprocessesthatinfluencepollutant
concentrations.Selectvariablesthatrepresenttheimportantprocessesthatinfluencepollutantconcentrations.Createamulti-yeardatasetoftheselectedvariables.Chooserecentyearsthatarerepresentativeofthecurrentemissionprofile.Reserveasubsetofthedataforindependentevaluation,butensureitrepresentsallconditions.Besurevariablesareforecasted.Usestatisticalsoftwaretocalculatethecoefficientsandaconstantfortheregressionequation.Performanindependentevaluationoftheregressionmodel.45工作報告DevelopingRegression(2of2)Usingthenaturallogofpollutantconcentrationsasthepredictandmayimproveperformance.Donotto“overfit”themodelbyusingtoomanypredictionvariables.An“over-fit”modelwilldecreasetheforecastaccuracy.Areasonablenumberofvariablestouseis5to10.Uniquevariablesshouldbeusedtoavoidredundancyandco?linearity.Stratifyingthedatasetmayimproveregressionperformance.SeasonsWeekendvs.weekday46工作報告Regression–StrengthsItiswelldocumentedandwidelyusedinavarietyofdisciplines.Softwareiswidelyavailable.Itisanobjectiveforecastingmethodthatreducespotentialbiasesarisingfromhumansubjectivity.Itcanproperlyweightrelationshipsthataredifficulttosubjectivelyquantify.Itcanbeusedincombinationwithotherforecastingmethods,oritcanbeusedastheprimarymethod.47工作報告Regression–LimitationsRegressionequationsrequireamodestamountofexpertiseandefforttodevelop.Regressionequationstendtopredictthemeanbetterthanthetails(i.e.,thehighestpollutantconcentrations)ofthedistribution.Theywilllikelyunderpredictthehighconcentrationsandoverpredictthelowconcentrations.Regressioncriteriaandstatisticalapproachesmayrequireperiodicupdatesasemissionsourcesandlandusechanges.Regressionequationsrequire3-5yearsofmeasurementdataintheregionofapplication,includingmanyinstancesofairpollutionevents,todevelop.48工作報告NeuralNetworksArtificialneuralnetworksarecomputeralgorithmsdesignedtosimulatethehumanbrainintermsofpatternrecognition.Artificialneuralnetworkscanbe“trained”toidentifypatternsincomplicatednon-lineardata.Becausepollutantformationprocessesarecomplex,neuralnetworksarewellsuitedforforecasting.However,neuralnetworksrequireabout50%moreefforttodevelopthanregressionequationsandprovideonlyamodestimprovementinforecastaccuracy(Comrie,1997).49工作報告NeuralNetworks–HowItWorksNeuralnetworksuseweightsandfunctionstoconvertinputvariablesintoaprediction.Aforecastersuppliestheneuralnetworkwithmeteorologicalandairqualitydata.Thesoftwarethenweightseachdatumandsumsthesevalueswithotherweighteddatumateachhiddennode.Thesoftwarethenmodifiesthenodedatabyanon-linearequation(transferfunction).Themodifieddataareweightedandsummedastheypasstotheoutputnode.Attheoutputnode,thesoftwaremodifiesthesummeddatausinganothertransferfunctionandthenoutputsaprediction.Comrie,199750工作報告DevelopingNeuralNetworksDeterminetheimportantprocessesthatinfluencepollutant
concentrations.Selectvariablesthatrepresenttheimportantprocesses.Createamulti-yeardatasetoftheselectedvariables.Chooserecentyearsthatarerepresentativeofthecurrentemissionprofile.Reserveasubsetofthedataforindependentevaluation,butensureitrepresentsallconditions.Besurevariablesareforecasted.Trainthedatausingneuralnetworksoftware.SeeGardnerandDorling(1998)fordetails.Testthetrainednetworkonatestdatasettoevaluatetheperformance.Iftheresultsaresatisfactory,thenetworkisreadytouseforforecasting.51工作報告NeuralNetworks–StrengthsCanweightrelationshipsthataredifficulttosubjectivelyquantifyAllowsfornon-linearrelationshipsbetweenvariablesPredictsextremevaluesmoreeffectivelythanregressionequations,providedthatthenetworkdevelopmentalsetcontainssuchoutliersOncedeveloped,aforecasterdoesnotneedspecificexpertisetooperateitCanbeusedincombinationwithotherforecastingmethods,oritcanbeusedastheprimaryforecastingmethod52工作報告NeuralNetworks–LimitationsComplexandnotcommonlyunderstood;thus,themethodcanbeinappropriatelyappliedanddifficulttodevelopDonotextrapolatedatawell;thus,extremepollutantconcentrationsnotincludedinthedevelopmentaldatasetwillnotbetakenintoconsiderationintheformulationoftheneuralnetworkpredictionRequire3-5yearsofmeasurementdataintheregionofapplication,includingmanyinstancesofairpollutionevents,todevelop.53工作報告NumericalModelingMathematicallyrepresentstheimportantprocessesthataffectpollutionRequiresasystemofmodelstosimulatetheemission,transport,diffusion,transformation,andremovalofairpollutionMeteorologicalforecastmodelsEmissionsmodelsAirqualitymodels54工作報告NumericalModeling–HowItWorks55工作報告ProcessesTreatedinGridModelsEmissionsSurfaceemittedsources(on-roadandnon-roadmobile,area,
low-levelpoint,biogenic,fires)Pointsources(electricalgeneration,industrial,other,fires)Advection(Transport)Dispersion(Diffusion)ChemicalTransformationVOCandNOxchemistry,radicalcycleForPMaerosolthermodynamicsandaqueous-phasechemistryDepositionDrydeposition(gasandparticles)Wetdeposition(rainoutandwashout,gasandparticles)BoundaryconditionsHorizontalboundaryconditionsTopboundaryconditions56工作報告PhotochemicalGridModelConcept57工作報告EulerianGridCellProcesses58工作報告CouplingBetweenGridCells59工作報告NumericalModeling–Example60工作報告DevelopingaNumericalModelDesignandplanthesystemIdentifyandallocatetheresourcesAcquirerequiredgeophysicaldataImplementthedataacquisitionandprocessingtools,componentmodels(emissions,meteorological,andairquality),andanalysisprograms.DeveloptheemissioninventoryTesttheoperationofalldataacquisitionprograms,preprocessorprograms,componentmodels,andanalysisprogramsasasystemIntegratedataacquisitionandprocessingtools,componentmodels,andanalysisprogramsintoanoperationalsystemTest,evaluate,andimprovetheintegratedsystem61工作報告DevelopingaNumericalModel(1of7)DesignandplanthesystemDecideonwhichpollutantstoforecast.Definemodelingdomainsconsideringgeographyandemissionssources.Selectcomponentmodelsconsideringforecastpollutants,domains,componentmodelcompatibility,availabilityofinterfaceprograms,andavailableresources.Determinehardwareandsoftwarerequirements.Identifysourcesofmeteorological,emissions,andairqualitydata.Prepareadetailedplanforacquiringandintegratingdataacquisition,modeling,andanalysissoftware.Planforcontinuousreal-timeevaluationofthemodelingsystem.
62工作報告IdentifyandallocatetheresourcesStaffforsystemimplementationandoperationsComputingandstorageconsistentwiththeselectionofdomainsandmodelsCommunicationsfordatatransferintoandoutofthemodelingsystemAcquirerequiredgeophysicaldataTopographicaldataLandusedataDevelopingaNumericalModel
(2of7)63工作報告Implementthedataacquisitionandprocessingtools,componentmodels(emissions,meteorological,andairquality),andanalysisprograms.Implementeachprogramindividually.Usestandardtestcasestoverifycorrectimplementation.DevelopingaNumericalModel
(3of7)64工作報告DeveloptheemissioninventoryAcquireneededemissioninventoryrelateddata.Reviewtheemissionsdataforaccuracy.Besurethattheemissioninventoryincludesthemostrecentemissionsdataavailable.Updatethebaseemissioninventoryannually.DevelopingaNumericalModel
(4of7)65工作報告TestandEvaluateTesttheoperationofalldataacquisitionprograms,preprocessorprograms,componentmodels,andanalysisprogramsasasystem.Reviewtheprognosticmeteorologicalforecastdataforaccuracyoverseveralweeksundervariousweatherpatterns.Runthecombinedmeteorological/emissions/airqualitymodelingsysteminaprognosticmodeusingavarietyofmeteorologicalandairqualityconditions.Evaluatetheperformanceofthemodelingsystembycomparingitwithobservations.Refinethemodelapplicationprocedures(i.e.,themethodsofselectingboundaryconditionsorinitialconcentrationfields,thenumberofspin-updays,thegridboundaries,etc.)toimproveperformance.DevelopingaNumericalModel
(5of7)66工作報告Integratedataacquisitionandprocessingtools,componentmodels,andanalysisprogramsintoanoperationalsystemImplementautomatedprocessesfordataacquisition,thedailydataexchangefromtheprognosticmeteorologicalmodelandtheemissionsmodeltothe3-Dairqualitymodelandanalysisprograms,andforecastproductproduction.Implementautomatedprocessesbyusingscriptingandschedulingtools.Verifythattheforecastproductsreflecttheactualmodelpredictions.DevelopingaNumericalModel
(6of7)67工作報告Test,evaluate,andimprovetheintegratedsystemRunthemodelinreal-timetestmodeforanextendedperiod.Compareoutputtoobserveddataandnotewhentherearemodelfailures.Afterobtainingsatisfactoryresultsonaconsistentbasis,usethemodelingsystemtoforecastpollutantconcentrations.Documentthemodelingsystem.Continuouslyevaluatethesystem’sperformancebycomparingobservationsandpredictions.Implementimprovementsasneededbasedonperformanceevaluationsandnewinformation.DevelopingaNumericalModel
(7of7)68工作報告NumericalModeling–StrengthsTheyarephenomenologicalbased,simulatingthephysicalandchemicalprocessesthatresultintheformationanddestructionofairpollutants.Theycanforecastforalargegeographicarea.Theycanpredictairpollutioninareaswheretherearenoairqualitymeasurements.Themodelforecastscanbepresentedasmapsofairqualitytoshowhowpredictedairqualityvariesoveraregionhourbyhour.Themodelscanbeusedtofurtherunderstandtheprocessesthatcontrolairpollutioninaspecificarea.Forexample,theycanbeusedtoassesstheimportanceoflocalemissionssourcesorlong-rangetransport.69工作報告NumericalModeling–LimitationsInaccuraciesintheprognosticmodelforecastsofwindspeeds,winddirections,extentofverticalmixing,andsolarinsulationmaylimit3-Dairqualitymodelperformance.Emissioninventoriesusedincurrentmodelsareoftenoutofdateandbasedonuncertainemissionfactorsandactivitylevels.Site-by-siteozoneconcentrationspredictedby3-Dairqualityforecastmodelsmaynotbeaccurateduetosmall-scaleweatherandemissionfeaturesthatarenotcapturedinthemodel.Substantialstaffandcomputerresourcesareneededtoestablishascientificallysoundandautomatedairqualityforecastsystembasedona3-Dairqualitymodel.70工作報告AustralianAirQualityForecastingSystemPeterManinsCSIROMarineandAtmosphericResearchAustraliaWMOGURMESAGmemberDemonstrationProject71工作報告Phenomenological–HowItWorksReliesonforecasterexperienceandcapabilitiesForecasterneedsgoodunderstandingoftheprocessesthatinfluencepollutionsuchasthesynoptic,regional,andlocalmeteorologicalconditions,plusairqualitycharacteristicsintheforecastarea.Forecastersynthesizestheinformationbyanalyzin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無縫鋼管地埋管施工方案
- 第一單元 各具特色的國家 單元教學(xué)設(shè)計-2024-2025學(xué)年高中政治統(tǒng)編版選擇性必修一當代國際政治與經(jīng)濟
- 2025年中國氣動常閉襯膠隔膜閥市場調(diào)查研究報告
- 2025年中國干式錠翼清洗機市場調(diào)查研究報告
- 11 屹立在世界的東方-自力更生揚眉吐氣(教學(xué)設(shè)計)2023-2024學(xué)年統(tǒng)編版道德與法治五年級下冊
- 吉林大廈景觀燈施工方案
- 2024-2025學(xué)年高中政治第四單元發(fā)展社會主義市抄濟第五課第二框新時代的勞動者教案新人教版必修1
- 2024-2025學(xué)年新教材高中數(shù)學(xué)第5章三角函數(shù)5.2三角函數(shù)的概念5.2.2同角三角函數(shù)的基本關(guān)系教學(xué)案新人教A版必修第一冊
- 第一單元第1課走進人工智能-教學(xué)設(shè)計 2023-2024學(xué)年浙教版(2023)初中信息技術(shù)八年級下冊
- Unit5《Lesson 18 I Can Do So Many Things》(教學(xué)設(shè)計)-2024-2025學(xué)年北京版(2024)英語三年級上冊
- 影視鑒賞-動畫電影課件
- 美學(xué)原理全套教學(xué)課件
- 《克雷洛夫寓言》閱讀指導(dǎo)課件
- 平衡計分卡-化戰(zhàn)略為行動
- 《室內(nèi)照明設(shè)計》(熊杰)794-5 教案 第7節(jié) 綠色照明、節(jié)能照明與應(yīng)急照明
- 腦卒中后認知障礙的護理課件
- 抑郁病診斷證明書
- 婦產(chǎn)科運用PDCA降低產(chǎn)后乳房脹痛發(fā)生率品管圈成果報告書
- 第四章泵的汽蝕
- 數(shù)字孿生水利工程建設(shè)技術(shù)導(dǎo)則(試行)
- 課堂精練九年級全一冊數(shù)學(xué)北師大版2022
評論
0/150
提交評論