版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=32.-的立方根是()A.-8 B.-4 C.-2 D.不存在3.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a4.點P(4,﹣3)關于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限5.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標系內(nèi)的圖象大致為()A. B. C. D.6.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.7.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.8.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③9.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數(shù)根;其中正確的是()A.①③ B.②③ C.③④ D.②④10.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:4二、填空題(本大題共6個小題,每小題3分,共18分)11.拋物線y=2x2+4向左平移2個單位長度,得到新拋物線的表達式為_____.12.(2017四川省攀枝花市)若關于x的分式方程無解,則實數(shù)m=_______.13.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.14.如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉(zhuǎn),使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____.15.如圖,AB為⊙O的弦,C為弦AB上一點,設AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過的面積為(m2﹣n2)π,則=______16.如圖,在中,于點,于點,為邊的中點,連接,則下列結(jié)論:①,②,③為等邊三角形,④當時,.請將正確結(jié)論的序號填在橫線上__.三、解答題(共8題,共72分)17.(8分)如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,(1)求k的值;(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.18.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.試判斷DE與⊙O的位置關系,并說明理由;過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.19.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.20.(8分)如圖,拋物線y=﹣x2+5x+n經(jīng)過點A(1,0),與y軸交于點B.(1)求拋物線的解析式;(2)P是y軸正半軸上一點,且△PAB是以AB為腰的等腰三角形,試求P點坐標.21.(8分)某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A、B、C、D、E這五個景點共接待游客人數(shù)為多少?(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.22.(10分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大?。?)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小23.(12分)我國南水北調(diào)中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)24.已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.【點睛】本題考查的知識點是解分式方程,解題關鍵是注意解得的解要進行檢驗.2、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.3、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.4、C【解析】
由題意得點P的坐標為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關于原點對稱,這兩點的橫縱坐標均互為相反數(shù);符號為(﹣,+)的點在第二象限.5、D【解析】
根據(jù)二次函數(shù)圖象開口向上得到a>0,再根據(jù)對稱軸確定出b,根據(jù)二次函數(shù)圖形與軸的交點個數(shù),判斷的符號,根據(jù)圖象發(fā)現(xiàn)當x=1時y=a+b+c<0,然后確定出一次函數(shù)圖象與反比例函數(shù)圖象的情況,即可得解.【詳解】∵二次函數(shù)圖象開口方向向上,∴a>0,∵對稱軸為直線∴b<0,二次函數(shù)圖形與軸有兩個交點,則>0,∵當x=1時y=a+b+c<0,∴的圖象經(jīng)過第二四象限,且與y軸的正半軸相交,反比例函數(shù)圖象在第二、四象限,只有D選項圖象符合.故選:D.【點睛】考查反比例函數(shù)的圖象,一次函數(shù)的圖象,二次函數(shù)的圖象,掌握函數(shù)圖象與系數(shù)的關系是解題的關鍵.6、D【解析】試題分析:根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.7、C【解析】
根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結(jié)論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結(jié)合根的判別式列出關于a的一元一次不等式組是解題的關鍵.8、D【解析】
∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.9、D【解析】
①錯誤.由題意a>1.b>1,c<1,abc<1;
②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;
③錯誤.拋物線與x軸的另一個交點是(1,1);
④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.【詳解】解:∵拋物線開口向上,∴a>1,
∵拋物線交y軸于負半軸,∴c<1,
∵對稱軸在y軸左邊,∴-<1,
∴b>1,
∴abc<1,故①錯誤.
∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,
當ax2+bx+c<mx+n時,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,
拋物線與x軸的另一個交點是(1,1),故③錯誤,
∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,
∴方程ax2+bx+c+3=1有兩個相等的實數(shù)根,故④正確.
故選:D.【點睛】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)與不等式,二次函數(shù)與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數(shù)形結(jié)合的思想解決問題.10、C【解析】
由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=2(x+2)2+1【解析】試題解析:∵二次函數(shù)解析式為y=2x2+1,∴頂點坐標(0,1)向左平移2個單位得到的點是(-2,1),可設新函數(shù)的解析式為y=2(x-h)2+k,代入頂點坐標得y=2(x+2)2+1,故答案為y=2(x+2)2+1.點睛:函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.12、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①當整式方程無解時,m﹣3=0,m=3;②當整式方程的解為分式方程的增根時,x=1,∴m﹣3=2,m=1.綜上所述:∴m的值為3或1.故答案為3或1.13、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質(zhì)、相似三角形的判定和性質(zhì).利用三角形重心的性質(zhì)得出AG:AD=2:3是解題的關鍵.14、(-2,6)【解析】分析:連接OB1,作B1H⊥OA于H,證明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.詳解:連接OB1,作B1H⊥OA于H,由題意得,OA=6,AB=OC-2,則tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋轉(zhuǎn)的性質(zhì)可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴點B1的坐標為(-2,6),故答案為(-2,6).點睛:本題考查的是矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì),掌握矩形的性質(zhì)、全等三角形的判定和性質(zhì)定理是解題的關鍵.15、【解析】
先確定線段BC過的面積:圓環(huán)的面積,作輔助圓和弦心距OD,根據(jù)已知面積列等式可得:S=πOB2-πOC2=(m2-n2)π,則OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得結(jié)論.【詳解】如圖,連接OB、OC,以O為圓心,OC為半徑畫圓,則將弦AB繞圓心O旋轉(zhuǎn)一周,線段BC掃過的面積為圓環(huán)的面積,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,過O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案為.【點睛】此題主要考查了勾股定理,垂徑定理,一元二次方程等知識,根據(jù)旋轉(zhuǎn)的性質(zhì)確定線段BC掃過的面積是解題的關鍵,是一道中等難度的題目.16、①③④【解析】
①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細分析圖形并熟練掌握性質(zhì)是解題的關鍵.三、解答題(共8題,共72分)17、(1)32;(2)x<﹣4或0<x<4;(3)點P的坐標是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點A(4,8),再根據(jù)點A與B關于原點對稱,得出B點坐標,即可得出k的值;(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點的右邊正比例函數(shù)的值小于反比例函數(shù)的值.(3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即1.可根據(jù)雙曲線的解析式設出P點的坐標,然后表示出△POA的面積,由于△POA的面積為1,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.詳解:(1)∵點A在正比例函數(shù)y=2x上,∴把x=4代入正比例函數(shù)y=2x,解得y=8,∴點A(4,8),把點A(4,8)代入反比例函數(shù)y=,得k=32,(2)∵點A與B關于原點對稱,∴B點坐標為(﹣4,﹣8),由交點坐標,根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;(3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,∴OP=OQ,OA=OB,∴四邊形APBQ是平行四邊形,∴S△POA=S平行四邊形APBQ×=×224=1,設點P的橫坐標為m(m>0且m≠4),得P(m,),過點P、A分別做x軸的垂線,垂足為E、F,∵點P、A在雙曲線上,∴S△POE=S△AOF=16,若0<m<4,如圖,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴(8+)?(4﹣m)=1.∴m1=﹣7+3,m2=﹣7﹣3(舍去),∴P(﹣7+3,16+);若m>4,如圖,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴×(8+)?(m﹣4)=1,解得m1=7+3,m2=7﹣3(舍去),∴P(7+3,﹣16+).∴點P的坐標是P(﹣7+3,16+);或P(7+3,﹣16+).點睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.18、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【解析】
(1)直接利用角平分線的定義結(jié)合平行線的判定與性質(zhì)得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結(jié)合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關鍵.19、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.20、(1);(2)(0,)或(0,4).【解析】試題分析:(1)將A點的坐標代入拋物線中,即可得出二次函數(shù)的解析式;(2)本題要分兩種情況進行討論:①PB=AB,先根據(jù)拋物線的解析式求出B點的坐標,即可得出OB的長,進而可求出AB的長,也就知道了PB的長,由此可求出P點的坐標;②PA=AB,此時P與B關于x軸對稱,由此可求出P點的坐標.試題解析:(1)∵拋物線經(jīng)過點A(1,0),∴,∴;(2)∵拋物線的解析式為,∴令,則,∴B點坐標(0,﹣4),AB=,①當PB=AB時,PB=AB=,∴OP=PB﹣OB=.∴P(0,),②當PA=AB時,P、B關于x軸對稱,∴P(0,4),因此P點的坐標為(0,)或(0,4).考點:二次函數(shù)綜合題.21、(1)50萬人;(2)43.2°;統(tǒng)計圖見解析(3).【解析】
(1)根據(jù)A景點的人數(shù)以及百分比進行計算即可得到該市景點共接待游客數(shù);(2)先用360°乘以E的百分比求得E景點所對應的圓心角的度數(shù),再根據(jù)B、D景點接待游客數(shù)補全條形統(tǒng)計圖;(3)根據(jù)甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市景點共接待游客數(shù)為:15÷30%=50(萬人);(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是:×360°=43.2°,B景點的人數(shù)為50×24%=12(萬人)、D景點的人數(shù)為50×18%=9(萬人),補全條形統(tǒng)計圖如下:故答案為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物流運輸公司股權轉(zhuǎn)讓書3篇
- 二零二五年度果樹病蟲害防治果園土地承包服務合同3篇
- 2025年度土地承包合同未滿征收補償與農(nóng)村土地權益置換政策執(zhí)行協(xié)議2篇
- 二零二五年度智慧城市運營管理商業(yè)合同3篇
- 內(nèi)河漁船出售轉(zhuǎn)讓合同(2025年度)附帶船舶運營許可及培訓3篇
- 二零二五年度2025年企業(yè)租賃工業(yè)廠房合同3篇
- 2025年度綠色生態(tài)養(yǎng)殖合伙協(xié)議合同書3篇
- 二零二五年度新能源項目經(jīng)理勞務合同3篇
- 2025年度民事糾紛和解協(xié)議書與知識產(chǎn)權侵權賠償及和解協(xié)議3篇
- 2025年度人工智能領域出資技術合作框架協(xié)議
- 部編人教版語文八年級下冊文言文課下注釋
- 運動神經(jīng)元病護理課件
- 新(完整)小學三年級語文教學案例
- ZZ007 現(xiàn)代加工技術賽項正式賽題及評分標準完整版包括所有附件-2023年全國職業(yè)院校技能大賽賽項正式賽卷
- 麥肯錫:企業(yè)發(fā)展戰(zhàn)略規(guī)劃制定及實施流程教學課件
- 新課標人教版五年級數(shù)學上冊總復習(全冊)
- 土木工程管理與工程造價的有效控制探析獲獎科研報告
- 基層版創(chuàng)傷中心建設指南(試行)
- 全過程造價咨詢服務實施方案
- 插圖幻燈片制作PPT3D小人圖標幻燈素材(精)
- 室內(nèi)設計裝飾材料案例分析課件
評論
0/150
提交評論