2023屆吉林省松原市前郭爾羅斯蒙古族自治縣中考沖刺卷數學試題含解析_第1頁
2023屆吉林省松原市前郭爾羅斯蒙古族自治縣中考沖刺卷數學試題含解析_第2頁
2023屆吉林省松原市前郭爾羅斯蒙古族自治縣中考沖刺卷數學試題含解析_第3頁
2023屆吉林省松原市前郭爾羅斯蒙古族自治縣中考沖刺卷數學試題含解析_第4頁
2023屆吉林省松原市前郭爾羅斯蒙古族自治縣中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.2.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg3.魏晉時期的數學家劉徽首創(chuàng)割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續(xù)努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π4.把多項式ax3﹣2ax2+ax分解因式,結果正確的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)25.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解6.已知x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,下列結論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<07.點A(-2,5)關于原點對稱的點的坐標是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)8.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④9.小明解方程的過程如下,他的解答過程中從第()步開始出現錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數化為1,得x=2⑤A.① B.② C.③ D.④10.如圖,數軸上有A,B,C,D四個點,其中表示互為相反數的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C11.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.12.如圖,在正方形網格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=26,CD=24,那么sin∠OCE=▲.14.某商場將一款品牌時裝按標價打九折出售,可獲利80%,這款商品的標價為1000元,則進價為________元。15.下面是甲、乙兩人10次射擊成績(環(huán)數)的條形統(tǒng)計圖,通常新手的成績不太確定,根據圖中的信息,估計這兩人中的新手是_____.16.分解因式:3ax2﹣3ay2=_____.17.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.18.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學從口袋中隨機取出兩個小球,則小溪同學取出的是一個紅球、一個白球的概率為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,關于x的二次函數y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.20.(6分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.21.(6分)學了統(tǒng)計知識后,小紅就本班同學上學“喜歡的出行方式”進行了一次調查,圖(1)和圖(2)是她根據采集的數據繪制的兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息解答以下問題:(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應的圓心角的度數.(2)若由3名“喜歡乘車”的學生,1名“喜歡騎車”的學生組隊參加一項活動,現欲從中選出2人擔任組長(不分正副),求出2人都是“喜歡乘車”的學生的概率,(要求列表或畫樹狀圖)22.(8分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.23.(8分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.24.(10分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F,B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數據:≈1.41,≈1.73)25.(10分)圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結果保留小數點后一位:參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)26.(12分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.27.(12分)為了解黔東南州某縣中考學生的體育考試得分情況,從該縣參加體育考試的4000名學生中隨機抽取了100名學生的體育考試成績作樣本分析,得出如下不完整的頻數統(tǒng)計表和頻數分布直方圖.成績分組

組中值

頻數

25≤x<30

27.5

4

30≤x<35

32.5

m

35≤x<40

37.5

24

40≤x<45

a

36

45≤x<50

47.5

n

50≤x<55

52.5

4

(1)求a、m、n的值,并補全頻數分布直方圖;(2)若體育得分在40分以上(包括40分)為優(yōu)秀,請問該縣中考體育成績優(yōu)秀學生人數約為多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.2、D【解析】試題分析:科學計數法是指:a×,且,n為原數的整數位數減一.3、C【解析】

連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.4、D【解析】

先提取公因式ax,再根據完全平方公式把x2﹣2x+1繼續(xù)分解即可.【詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.5、C【解析】

先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關鍵.6、A【解析】分析:A、根據方程的系數結合根的判別式,可得出△>0,由此即可得出x1≠x2,結論A正確;B、根據根與系數的關系可得出x1+x2=a,結合a的值不確定,可得出B結論不一定正確;C、根據根與系數的關系可得出x1?x2=﹣2,結論C錯誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結論D錯誤.綜上即可得出結論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結論A正確;B、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結論不一定正確;C、∵x1、x2是關于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結論C錯誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結論D錯誤.故選A.點睛:本題考查了根的判別式以及根與系數的關系,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.7、B【解析】

根據平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).【詳解】根據中心對稱的性質,得點P(?2,5)關于原點對稱點的點的坐標是(2,?5).故選:B.【點睛】考查關于原點對稱的點的坐標特征,平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y).8、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.9、A【解析】

根據解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.10、C【解析】

根據相反數的定義進行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據相反數和為0的特點,可確定點A和點D表示互為相反數的點.故答案為C.【點睛】本題考查了相反數的定義,掌握相反數和為0是解答本題的關鍵.11、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.12、C【解析】

根據A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,

建立平面直角坐標系,如圖,

∴C(2,-1)

故選:C.【點睛】本題考查平面直角坐標系,解題的關鍵是建立直角坐標系,本題屬于基礎題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】垂徑定理,勾股定理,銳角三角函數的定義?!痉治觥咳鐖D,設AB與CD相交于點E,則根據直徑AB=26,得出半徑OC=13;由CD=24,CD⊥AB,根據垂徑定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根據正弦函數的定義,求出sin∠OCE的度數:。14、500【解析】

設該品牌時裝的進價為x元,根據題意列出方程,求出方程的解得到x的值,即可得到結果.【詳解】解:設該品牌時裝的進價為x元,根據題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進價為500元.故答案為:500.【點睛】本題考查了一元一次方程的應用,找出題中的等量關系是解本題的關鍵.15、甲.【解析】

根據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩(wěn)定,方差越大,數據不穩(wěn)定,則為新手.【詳解】∵通過觀察條形統(tǒng)計圖可知:乙的成績更整齊,也相對更穩(wěn)定,∴甲的方差大于乙的方差.故答案為:甲.【點睛】本題考查的知識點是方差,條形統(tǒng)計圖,解題的關鍵是熟練的掌握方差,條形統(tǒng)計圖.16、3a(x+y)(x-y)【解析】

解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.17、1.【解析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質;等腰三角形的性質;勾股定理;分類討論.18、【解析】

先畫樹狀圖求出所有等可能的結果數,再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結果數,然后根據概率公式求解.【詳解】解:根據題意畫樹狀圖如下:共有12種等可能的結果數,其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結果數為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)二次函數的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數的表達式;(2)先求出點B的坐標,再根據勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據二次函數的性質即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,-3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.20、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】

(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉90°得到對應點,順次連接即可.A′B′在旋轉過程中掃過的圖形面積是一個扇形,根據扇形的面積公式計算即可.【詳解】解:(1)見圖中△A′B′C′

(2)見圖中△A″B′C″

扇形的面積(平方單位).【點睛】本題主要考查了位似圖形及旋轉變換作圖的方法及扇形的面積公式.21、(1)補全條形統(tǒng)計圖見解析;“騎車”部分所對應的圓心角的度數為108°;(2)2人都是“喜歡乘車”的學生的概率為.【解析】

(1)從兩圖中可以看出乘車的有25人,占了50%,即可得共有學生50人;總人數減乘車的和騎車的人數就是步行的人數,根據數據補全直方圖即可;要求扇形的度數就要先求出騎車的占的百分比,然后再求度數;(2)列出從這4人中選兩人的所有等可能結果數,2人都是“喜歡乘車”的學生的情況有3種,然后根據概率公式即可求得.【詳解】(1)被調查的總人數為25÷50%=50人;則步行的人數為50﹣25﹣15=10人;如圖所示條形圖,“騎車”部分所對應的圓心角的度數=×360°=108°;(2)設3名“喜歡乘車”的學生表示為A、B、C,1名“喜歡騎車”的學生表示為D,則有AB、AC、AD、BC、BD、CD這6種等可能的情況,其中2人都是“喜歡乘車”的學生有3種結果,所以2人都是“喜歡乘車”的學生的概率為.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1);(2)m=3;(3)【解析】

(1)本題需先根據圖象過A點,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關于m的方程,則可求得m的值;(3)在y軸上取一點Q,使,可證的△P2OB∽△QOP2,則可求得Q點坐標,則可把AP2+BP2轉換為AP2+QP2,利用三角形三邊關系可知當A、P2、Q三點在一條線上時,有最小值,則可求出答案.【詳解】解:(1)∵A(4,0)在拋物線上,∴0=16a+4(a+2)+2,解得a=﹣,∴拋物線的解析式為y=;(2)∵∴令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x軸,∴△OAB∽△PAN,∴,∴,∴,∵M在拋物線上,∴PM=+2,∵PN:MN=1:3,∴PN:PM=1:4,∴,解得m=3或m=4(舍去);(3)在y軸上取一點Q,使,如圖,由(2)可知P1(3,0),且OB=2,∴,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴,∴當Q(0,)時,QP2=,∴AP2+BP2=AP2+QP2≥AQ,∴當A、P2、Q三點在一條線上時,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值為【點睛】本題考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里表示三角形的面積及線段和最小值問題,要求會用字母代替長度,坐標,會對代數式進行合理變形,難度相對較大.23、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】

根據直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維能力的訓練.24、7.3米【解析】

:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【點睛】本題考查的知識點是解直角三角形的應用-仰角俯角問題,解題的關鍵是熟練的掌握解直角三角形的應用-仰角俯角問題.25、操作平臺C離地面的高度為7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計算出∠CAF=28°,則在Rt△ACF中利用正弦可計算出CF,然后計算CF+EF即可.詳解:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論