2023屆吉林省德惠市大區(qū)市級(jí)名校中考數(shù)學(xué)模擬試題含解析_第1頁
2023屆吉林省德惠市大區(qū)市級(jí)名校中考數(shù)學(xué)模擬試題含解析_第2頁
2023屆吉林省德惠市大區(qū)市級(jí)名校中考數(shù)學(xué)模擬試題含解析_第3頁
2023屆吉林省德惠市大區(qū)市級(jí)名校中考數(shù)學(xué)模擬試題含解析_第4頁
2023屆吉林省德惠市大區(qū)市級(jí)名校中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列各運(yùn)算中,計(jì)算正確的是()A. B.C. D.2.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>03.如圖,從圓外一點(diǎn)引圓的兩條切線,,切點(diǎn)分別為,,如果,,那么弦AB的長(zhǎng)是()A. B. C. D.4.﹣2的絕對(duì)值是()A.2 B. C. D.5.一艘輪船和一艘漁船同時(shí)沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達(dá)點(diǎn)M處,同一時(shí)刻漁船已航行到與港口O相距80海里的點(diǎn)N處,若M、N兩點(diǎn)相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°6.若分式在實(shí)數(shù)范圍內(nèi)有意義,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.我國(guó)古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.8.已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P,若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤9.下列幾何體是由4個(gè)相同的小正方體搭成的,其中左視圖與俯視圖相同的是()A. B. C. D.10.如圖,拋物線y=-x2+mx的對(duì)稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0(t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是(

)A.-5<t≤4

B.3<t≤4

C.-5<t<3

D.t>-5二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,可列方程組為_____.12.如圖,矩形ABCD的邊AB在x軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)E的坐標(biāo)為(0,2).點(diǎn)F(x,0)在邊AB上運(yùn)動(dòng),若過點(diǎn)E、F的直線將矩形ABCD的周長(zhǎng)分成2:1兩部分,則x的值為__.13.已知反比例函數(shù)y=,當(dāng)x>0時(shí),y隨x增大而減小,則m的取值范圍是_____.14.如圖,有一個(gè)橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個(gè)門洞的高度為_______.(精確到)15.一個(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,從中任意摸出一個(gè)球恰好是紅球的概率是____.16.化簡(jiǎn)的結(jié)果為_____.三、解答題(共8題,共72分)17.(8分)某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價(jià)為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護(hù)環(huán)境,需對(duì)污水凈化處理后再排出.已知每處理1污水的費(fèi)用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤(rùn)y元:(1)求出y與x的函數(shù)關(guān)系式.(純利潤(rùn)=總收入-總支出)(2)當(dāng)y=106000時(shí),求該廠在這個(gè)月中生產(chǎn)產(chǎn)品的件數(shù).18.(8分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫出BD'平方的值.19.(8分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.20.(8分)正方形ABCD中,點(diǎn)P為直線AB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接DP,將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點(diǎn)P在線段AB上時(shí),如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點(diǎn)P在線段BA的延長(zhǎng)線上時(shí),如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上時(shí),如圖3,請(qǐng)寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.21.(8分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.22.(10分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點(diǎn)作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點(diǎn)坐標(biāo);如圖2,若P點(diǎn)從A點(diǎn)出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點(diǎn)P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點(diǎn)共線,求此時(shí)∠APB的度數(shù)及P點(diǎn)坐標(biāo).23.(12分)正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是______;(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫出線段CK長(zhǎng)的最大值.24.“知識(shí)改變命運(yùn),科技繁榮祖國(guó)”.在舉辦一屆全市科技運(yùn)動(dòng)會(huì)上.下圖為某校2017年參加科技運(yùn)動(dòng)會(huì)航模比賽(包括空模、海模、車模、建模四個(gè)類別)的參賽人數(shù)統(tǒng)計(jì)圖:(1)該校參加航模比賽的總?cè)藬?shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)從全市中小學(xué)參加航模比賽選手中隨機(jī)抽取80人,其中有32人獲獎(jiǎng).今年全市中小學(xué)參加航模比賽人數(shù)共有2500人,請(qǐng)你估算今年參加航模比賽的獲獎(jiǎng)人數(shù)約是多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項(xiàng)錯(cuò)誤;B、,該選項(xiàng)錯(cuò)誤;C、,該選項(xiàng)錯(cuò)誤;D、,該選項(xiàng)正確;故選:D.【點(diǎn)睛】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關(guān)鍵.2、D【解析】

首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號(hào),從而確定答案.【詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項(xiàng)錯(cuò)誤;B.ab<0,故原選項(xiàng)錯(cuò)誤;C.a-b<0,故原選項(xiàng)錯(cuò)誤;D.,正確.故選D.【點(diǎn)睛】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關(guān)系.3、C【解析】

先利用切線長(zhǎng)定理得到,再利用可判斷為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:,PB為的切線,,,為等邊三角形,.故選C.【點(diǎn)睛】本題考查切線長(zhǎng)定理,掌握切線長(zhǎng)定理是解題的關(guān)鍵.4、A【解析】分析:根據(jù)數(shù)軸上某個(gè)數(shù)與原點(diǎn)的距離叫做這個(gè)數(shù)的絕對(duì)值的定義,在數(shù)軸上,點(diǎn)﹣2到原點(diǎn)的距離是2,所以﹣2的絕對(duì)值是2,故選A.5、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點(diǎn)睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關(guān)鍵.6、D【解析】

根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點(diǎn)睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運(yùn)用分式有意義的條件,本題屬于基礎(chǔ)題型.7、B【解析】

根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點(diǎn)睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.8、D【解析】

①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BF⊥AE延長(zhǎng)線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯(cuò)誤的;

③利用全等三角形的性質(zhì)和對(duì)頂角相等即可判定③說法正確;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計(jì)算即可判定;

⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;

由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,

所以∠BEP=90°,

過B作BF⊥AE,交AE的延長(zhǎng)線于F,則BF的長(zhǎng)是點(diǎn)B到直線AE的距離,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是錯(cuò)誤的;

因?yàn)椤鰽PD≌△AEB,所以∠ADP=∠ABE,而對(duì)頂角相等,所以③是正確的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯(cuò)誤的;

連接BD,則S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

綜上可知,正確的有①③⑤.故選D.【點(diǎn)睛】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識(shí)才能很好解決問題.9、C【解析】試題分析:從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.選項(xiàng)C左視圖與俯視圖都是,故選C.10、B【解析】

先利用拋物線的對(duì)稱軸方程求出m得到拋物線解析式為y=-x2+4x,配方得到拋物線的頂點(diǎn)坐標(biāo)為(2,4),再計(jì)算出當(dāng)x=1或3時(shí),y=3,結(jié)合函數(shù)圖象,利用拋物線y=-x2+4x與直線y=t在1<x<3的范圍內(nèi)有公共點(diǎn)可確定t的范圍.【詳解】∵拋物線y=-x2+mx的對(duì)稱軸為直線x=2,∴,解之:m=4,∴y=-x2+4x,當(dāng)x=2時(shí),y=-4+8=4,∴頂點(diǎn)坐標(biāo)為(2,4),∵關(guān)于x的-元二次方程-x2+mx-t=0(t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,當(dāng)x=1時(shí),y=-1+4=3,當(dāng)x=2時(shí),y=-4+8=4,∴3<t≤4,故選:B【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】試題分析:根據(jù)“5頭牛,2只羊,值金10兩;2頭牛、5只羊,值金8兩.”列方程組即可.考點(diǎn):二元一次方程組的應(yīng)用12、或﹣.【解析】

試題分析:當(dāng)點(diǎn)F在OB上時(shí),設(shè)EF交CD于點(diǎn)P,可求點(diǎn)P的坐標(biāo)為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對(duì)稱性可求當(dāng)點(diǎn)F在OA上時(shí),x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【點(diǎn)睛】考點(diǎn):動(dòng)點(diǎn)問題.13、m>1.【解析】分析:根據(jù)反比例函數(shù)y=,當(dāng)x>0時(shí),y隨x增大而減小,可得出m﹣1>0,解之即可得出m的取值范圍.詳解:∵反比例函數(shù)y=,當(dāng)x>0時(shí),y隨x增大而減小,∴m﹣1>0,解得:m>1.故答案為m>1.點(diǎn)睛:本題考查了反比例函數(shù)的性質(zhì),根據(jù)反比例函數(shù)的性質(zhì)找出m﹣1>0是解題的關(guān)鍵.14、9.1【解析】

建立直角坐標(biāo)系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點(diǎn)的縱坐標(biāo)【詳解】如圖,以地面為x軸,門洞中點(diǎn)為O點(diǎn),畫出y軸,建立直角坐標(biāo)系由題意可知各點(diǎn)坐標(biāo)為A(-4,0)B(4,0)D(-3,4)設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點(diǎn)帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點(diǎn)睛】本題考查二次函數(shù)的簡(jiǎn)單應(yīng)用,能夠建立直角坐標(biāo)系解出二次函數(shù)解析式是本題關(guān)鍵15、.【解析】

根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻俊咭粋€(gè)不透明口袋里裝有形狀、大小都相同的2個(gè)紅球和4個(gè)黑球,∴從中任意摸出一個(gè)球恰好是紅球的概率為:,故答案為.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.16、+1【解析】

利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計(jì)算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點(diǎn)睛】本題考查了二次根式的混合運(yùn)算,在二次根式的混合運(yùn)算中,如能結(jié)合題目特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.三、解答題(共8題,共72分)17、(1)y=19x-1(x>0且x是整數(shù))(2)6000件【解析】

(1)本題的等量關(guān)系是:純利潤(rùn)=產(chǎn)品的出廠單價(jià)×產(chǎn)品的數(shù)量-產(chǎn)品的成本價(jià)×產(chǎn)品的數(shù)量-生產(chǎn)過程中的污水處理費(fèi)-排污設(shè)備的損耗,可根據(jù)此等量關(guān)系來列出總利潤(rùn)與產(chǎn)品數(shù)量之間的函數(shù)關(guān)系式;(2)根據(jù)(1)中得出的式子,將y的值代入其中,求出x即可.【詳解】(1)依題意得:y=80x-60x-0.5x?2-1,化簡(jiǎn)得:y=19x-1,∴所求的函數(shù)關(guān)系式為y=19x-1.(x>0且x是整數(shù))(2)當(dāng)y=106000時(shí),代入得:106000=19x-1,解得x=6000,∴這個(gè)月該廠生產(chǎn)產(chǎn)品6000件.【點(diǎn)睛】本題是利用一次函數(shù)的有關(guān)知識(shí)解答實(shí)際應(yīng)用題,可根據(jù)題意找出等量關(guān)系,列出函數(shù)式進(jìn)行求解.18、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長(zhǎng)線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長(zhǎng)度為16+8或16﹣8.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解.解題時(shí)注意:有三個(gè)角是直角的四邊形是矩形.19、(1)520千米;(2)300千米/時(shí).【解析】試題分析:(1)根據(jù)普通列車的行駛路程=高鐵的行駛路程×1.3得出答案;(2)首先設(shè)普通列車的平均速度為x千米/時(shí),則高鐵平均速度為2.5x千米/時(shí),根據(jù)題意列出分式方程求出未知數(shù)x的值.試題解析:(1)依題意可得,普通列車的行駛路程為400×1.3=520(千米)(2)設(shè)普通列車的平均速度為x千米/時(shí),則高鐵平均速度為2.5x千米/時(shí)依題意有:=3解得:x=120經(jīng)檢驗(yàn):x=120分式方程的解且符合題意高鐵平均速度:2.5×120=300千米/時(shí)答:高鐵平均速度為2.5×120=300千米/時(shí).考點(diǎn):分式方程的應(yīng)用.20、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解析】

(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【點(diǎn)睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學(xué)思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.21、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;

②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;

(2)先確定出B(1,),D(1,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時(shí),,,當(dāng)時(shí),,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點(diǎn)是線段的中點(diǎn),,當(dāng)時(shí),由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,,當(dāng)時(shí),,,,,,,,,,.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.22、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據(jù)全等三角形的性質(zhì)得到BH=OA=3,CH=OB=1,求出OH,得到C點(diǎn)坐標(biāo);(2)證明△PBA≌△QBC,根據(jù)全等三角形的性質(zhì)得到PA=CQ;(3)根據(jù)C、P,Q三點(diǎn)共線,得到∠BQC=135°,根據(jù)全等三角形的性質(zhì)得到∠BPA=∠BQC=135°,根據(jù)等腰三角形的性質(zhì)求出OP,得到P點(diǎn)坐標(biāo).【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點(diǎn)坐標(biāo)為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當(dāng)C、P,Q三點(diǎn)共線時(shí),∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點(diǎn)坐標(biāo)為(1,0).【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì)、三角形的外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.23、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】

(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點(diǎn)都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點(diǎn)都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當(dāng)C、A、K三點(diǎn)共線時(shí),CK的長(zhǎng)最大;然后根據(jù)全等三角形判定的方法,判斷出△DF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論