版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
建立數(shù)學(xué)模型講義第一頁(yè),共三十頁(yè),2022年,8月28日玩具、照片、飛機(jī)、火箭模型……~實(shí)物模型水箱中的艦艇、風(fēng)洞中的飛機(jī)……~物理模型地圖、電路圖、分子結(jié)構(gòu)圖……~符號(hào)模型模型是為了一定目的,對(duì)客觀事物的一部分進(jìn)行簡(jiǎn)縮、抽象、提煉出來的原型的替代物模型集中反映了原型中人們需要的那一部分特征1.1
從現(xiàn)實(shí)對(duì)象到數(shù)學(xué)模型我們常見的模型第二頁(yè),共三十頁(yè),2022年,8月28日你碰到過的數(shù)學(xué)模型——“航行問題”用x
表示船速,y表示水速,列出方程:答:船速每小時(shí)20千米/小時(shí).甲乙兩地相距750千米,船從甲到乙順?biāo)叫行?0小時(shí),從乙到甲逆水航行需50小時(shí),問船的速度是多少?x=20y=5求解第三頁(yè),共三十頁(yè),2022年,8月28日航行問題建立數(shù)學(xué)模型的基本步驟作出簡(jiǎn)化假設(shè)(船速、水速為常數(shù));用符號(hào)表示有關(guān)量(x,y表示船速和水速);用物理定律(勻速運(yùn)動(dòng)的距離等于速度乘以時(shí)間)列出數(shù)學(xué)式子(二元一次方程);求解得到數(shù)學(xué)解答(x=20,y=5);回答原問題(船速每小時(shí)20千米/小時(shí))。第四頁(yè),共三十頁(yè),2022年,8月28日數(shù)學(xué)模型(MathematicalModel)和數(shù)學(xué)建模(MathematicalModeling)對(duì)于一個(gè)現(xiàn)實(shí)對(duì)象,為了一個(gè)特定目的,根據(jù)其內(nèi)在規(guī)律,作出必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu)。建立數(shù)學(xué)模型的全過程(包括表述、求解、解釋、檢驗(yàn)等)數(shù)學(xué)模型數(shù)學(xué)建模第五頁(yè),共三十頁(yè),2022年,8月28日1.2
數(shù)學(xué)建模的重要意義電子計(jì)算機(jī)的出現(xiàn)及飛速發(fā)展;數(shù)學(xué)以空前的廣度和深度向一切領(lǐng)域滲透。數(shù)學(xué)建模作為用數(shù)學(xué)方法解決實(shí)際問題的第一步,越來越受到人們的重視。
在一般工程技術(shù)領(lǐng)域數(shù)學(xué)建模仍然大有用武之地;
在高新技術(shù)領(lǐng)域數(shù)學(xué)建模幾乎是必不可少的工具;
數(shù)學(xué)進(jìn)入一些新領(lǐng)域,為數(shù)學(xué)建模開辟了許多處女地。第六頁(yè),共三十頁(yè),2022年,8月28日數(shù)學(xué)建模的具體應(yīng)用
分析與設(shè)計(jì)
預(yù)報(bào)與決策
控制與優(yōu)化
規(guī)劃與管理數(shù)學(xué)建模計(jì)算機(jī)技術(shù)知識(shí)經(jīng)濟(jì)如虎添翼第七頁(yè),共三十頁(yè),2022年,8月28日1.3
數(shù)學(xué)建模示例1.3.1
椅子能在不平的地面上放穩(wěn)嗎問題分析模型假設(shè)通常~三只腳著地放穩(wěn)~四只腳著地四條腿一樣長(zhǎng),椅腳與地面點(diǎn)接觸,四腳連線呈正方形;地面高度連續(xù)變化,可視為數(shù)學(xué)上的連續(xù)面;地面相對(duì)平坦,使椅子在任意位置至少三只腳同時(shí)著地。第八頁(yè),共三十頁(yè),2022年,8月28日模型構(gòu)成用數(shù)學(xué)語言把椅子位置和四只腳著地的關(guān)系表示出來椅子位置利用正方形(椅腳連線)的對(duì)稱性用(對(duì)角線與x軸的夾角)表示椅子位置四只腳著地距離是的函數(shù)四個(gè)距離(四只腳)A,C兩腳與地面距離之和~f()B,D兩腳與地面距離之和~g()兩個(gè)距離xBADCOD′C′B′A′椅腳與地面距離為零正方形ABCD繞O點(diǎn)旋轉(zhuǎn)正方形對(duì)稱性第九頁(yè),共三十頁(yè),2022年,8月28日用數(shù)學(xué)語言把椅子位置和四只腳著地的關(guān)系表示出來F(),g()是連續(xù)數(shù)對(duì)任意,f(),g()至少一個(gè)為0數(shù)學(xué)問題已知:f(),g()是連續(xù)函數(shù);對(duì)任意,f()?g()=0;且g(0)=0,f(0)>0.證明:存在0,使f(0)=g(0)=0.模型構(gòu)成地面為連續(xù)曲面椅子在任意位置至少三只腳著地第十頁(yè),共三十頁(yè),2022年,8月28日模型求解給出一種簡(jiǎn)單、粗糙的證明方法將椅子旋轉(zhuǎn)900,對(duì)角線AC和BD互換。由g(0)=0,f(0)>0,知f(/2)=0,g(/2)>0.令h()=f()–g(),則h(0)>0和h(/2)<0.由f,g的連續(xù)性知
h為連續(xù)函數(shù),據(jù)連續(xù)函數(shù)的基本性質(zhì),必存在0,使h(0)=0,即f(0)=g(0).因?yàn)閒()?g()=0,所以f(0)=g(0)=0.評(píng)注和思考建模的關(guān)鍵~假設(shè)條件的本質(zhì)與非本質(zhì)考察四腳呈長(zhǎng)方形的椅子和f(),g()的確定第十一頁(yè),共三十頁(yè),2022年,8月28日1.3.2
商人們?cè)鯓影踩^河問題(智力游戲)3名商人3名隨從隨從們密約,在河的任一岸,一旦隨從的人數(shù)比商人多,就殺人越貨.但是乘船渡河的方案由商人決定.商人們?cè)鯓硬拍馨踩^河?問題分析多步?jīng)Q策過程決策~每一步(此岸到彼岸或彼岸到此岸)船上的人員要求~在安全的前提下(兩岸的隨從數(shù)不比商人多),經(jīng)有限步使全體人員過河.河小船(至多2人)第十二頁(yè),共三十頁(yè),2022年,8月28日模型構(gòu)成xk~第k次渡河前此岸的商人數(shù)yk~第k次渡河前此岸的隨從數(shù)xk,yk=0,1,2,3;
k=1,2,sk=(xk,yk)~過程的狀態(tài)S={(x
,y)x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2}S~允許狀態(tài)集合uk~第k次渡船上的商人數(shù)vk~第k次渡船上的隨從數(shù)dk=(uk,vk)~決策D={(u
,v)u+v=1,2}~允許決策集合uk,vk=0,1,2;k=1,2,sk+1=sk
dk+(-1)k~狀態(tài)轉(zhuǎn)移律求dkD(k=1,2,n),使skS,并按轉(zhuǎn)移律由s1=(3,3)到達(dá)sn+1=(0,0).多步?jīng)Q策問題第十三頁(yè),共三十頁(yè),2022年,8月28日模型求解窮舉法~編程上機(jī)圖解法狀態(tài)s=(x,y)~16個(gè)格點(diǎn)
~10個(gè)點(diǎn)允許決策~移動(dòng)1或2格;k奇,左下移;k偶,右上移.d1,,d11給出安全渡河方案評(píng)注和思考規(guī)格化方法,易于推廣考慮4名商人各帶一隨從的情況xy3322110s1sn+1d1d11允許狀態(tài)S={(x
,y)x=0,y=0,1,2,3;
x=3,y=0,1,2,3;x=y=1,2}第十四頁(yè),共三十頁(yè),2022年,8月28日模仿商人過河問題中的狀態(tài)轉(zhuǎn)移模型,作下面這個(gè)眾所周知的智力游戲:人帶著貓、雞、米過河,船除需要人劃之外,至多能載貓、雞、米三者之一,而當(dāng)人不在場(chǎng)時(shí)貓要吃雞,雞要吃米。試設(shè)計(jì)一個(gè)安全渡河的方案,并使渡河次數(shù)盡量地少第十五頁(yè),共三十頁(yè),2022年,8月28日背景年1625183019301960197419871999人口(億)5102030405060世界人口增長(zhǎng)概況中國(guó)人口增長(zhǎng)概況年19081933195319641982199019952000人口(億)3.04.76.07.210.311.312.013.0研究人口變化規(guī)律控制人口過快增長(zhǎng)1.3.3如何預(yù)報(bào)人口的增長(zhǎng)第十六頁(yè),共三十頁(yè),2022年,8月28日指數(shù)增長(zhǎng)模型——馬爾薩斯提出(1798)常用的計(jì)算公式x(t)~時(shí)刻t的人口基本假設(shè)
:人口(相對(duì))增長(zhǎng)率r是常數(shù)今年人口x0,年增長(zhǎng)率rk年后人口隨著時(shí)間增加,人口按指數(shù)規(guī)律無限增長(zhǎng)第十七頁(yè),共三十頁(yè),2022年,8月28日指數(shù)增長(zhǎng)模型的應(yīng)用及局限性與19世紀(jì)以前歐洲一些地區(qū)人口統(tǒng)計(jì)數(shù)據(jù)吻合適用于19世紀(jì)后遷往加拿大的歐洲移民后代可用于短期人口增長(zhǎng)預(yù)測(cè)不符合19世紀(jì)后多數(shù)地區(qū)人口增長(zhǎng)規(guī)律不能預(yù)測(cè)較長(zhǎng)期的人口增長(zhǎng)過程19世紀(jì)后人口數(shù)據(jù)人口增長(zhǎng)率r不是常數(shù)(逐漸下降)第十八頁(yè),共三十頁(yè),2022年,8月28日阻滯增長(zhǎng)模型(Logistic模型)人口增長(zhǎng)到一定數(shù)量后,增長(zhǎng)率下降的原因:資源、環(huán)境等因素對(duì)人口增長(zhǎng)的阻滯作用且阻滯作用隨人口數(shù)量增加而變大假設(shè)r~固有增長(zhǎng)率(x很小時(shí))xm~人口容量(資源、環(huán)境能容納的最大數(shù)量)r是x的減函數(shù)第十九頁(yè),共三十頁(yè),2022年,8月28日dx/dtx0xmxm/2xmtx0x(t)~S形曲線,x增加先快后慢x0xm/2阻滯增長(zhǎng)模型(Logistic模型)第二十頁(yè),共三十頁(yè),2022年,8月28日參數(shù)估計(jì)用指數(shù)增長(zhǎng)模型或阻滯增長(zhǎng)模型作人口預(yù)報(bào),必須先估計(jì)模型參數(shù)r或r,xm利用統(tǒng)計(jì)數(shù)據(jù)用最小二乘法作擬合例:美國(guó)人口數(shù)據(jù)(單位~百萬)
186018701880……196019701980199031.438.650.2……179.3204.0226.5251.4專家估計(jì)阻滯增長(zhǎng)模型(Logistic模型)r=0.2557,xm=392.1第二十一頁(yè),共三十頁(yè),2022年,8月28日模型檢驗(yàn)用模型計(jì)算2000年美國(guó)人口,與實(shí)際數(shù)據(jù)比較實(shí)際為281.4(百萬)模型應(yīng)用——預(yù)報(bào)美國(guó)2010年的人口加入2000年人口數(shù)據(jù)后重新估計(jì)模型參數(shù)Logistic模型在經(jīng)濟(jì)領(lǐng)域中的應(yīng)用(如耐用消費(fèi)品的售量)阻滯增長(zhǎng)模型(Logistic模型)r=0.2490,xm=434.0x(2010)=306.0第二十二頁(yè),共三十頁(yè),2022年,8月28日數(shù)學(xué)建模的基本方法機(jī)理分析測(cè)試分析根據(jù)對(duì)客觀事物特性的認(rèn)識(shí),找出反映
內(nèi)部機(jī)理的數(shù)量規(guī)律將對(duì)象看作“黑箱”,通過對(duì)量測(cè)數(shù)據(jù)的統(tǒng)計(jì)分析,找出與數(shù)據(jù)擬合最好的模型機(jī)理分析沒有統(tǒng)一的方法,主要通過實(shí)例研究(CaseStudies)來學(xué)習(xí)。以下建模主要指機(jī)理分析。二者結(jié)合用機(jī)理分析建立模型結(jié)構(gòu),用測(cè)試分析確
定模型參數(shù)1.4
數(shù)學(xué)建模的方法和步驟第二十三頁(yè),共三十頁(yè),2022年,8月28日數(shù)學(xué)建模的一般步驟模型準(zhǔn)備模型假設(shè)模型構(gòu)成模型求解模型分析模型檢驗(yàn)?zāi)P蛻?yīng)用模型準(zhǔn)備了解實(shí)際背景明確建模目的搜集有關(guān)信息掌握對(duì)象特征形成一個(gè)比較清晰的‘問題’第二十四頁(yè),共三十頁(yè),2022年,8月28日模型假設(shè)針對(duì)問題特點(diǎn)和建模目的作出合理的、簡(jiǎn)化的假設(shè)在合理與簡(jiǎn)化之間作出折中模型構(gòu)成用數(shù)學(xué)的語言、符號(hào)描述問題發(fā)揮想像力使用類比法盡量采用簡(jiǎn)單的數(shù)學(xué)工具數(shù)學(xué)建模的一般步驟第二十五頁(yè),共三十頁(yè),2022年,8月28日模型求解各種數(shù)學(xué)方法、軟件和計(jì)算機(jī)技術(shù)如結(jié)果的誤差分析、統(tǒng)計(jì)分析、模型對(duì)數(shù)據(jù)的穩(wěn)定性分析模型分析模型檢驗(yàn)與實(shí)際現(xiàn)象、數(shù)據(jù)比較,檢驗(yàn)?zāi)P偷暮侠硇?、適用性模型應(yīng)用數(shù)學(xué)建模的一般步驟第二十六頁(yè),共三十頁(yè),2022年,8月28日數(shù)學(xué)建模的全過程現(xiàn)實(shí)對(duì)象的信息數(shù)學(xué)模型現(xiàn)實(shí)對(duì)象的解答數(shù)學(xué)模型的解答表述求解解釋驗(yàn)證(歸納)(演繹)現(xiàn)實(shí)世界數(shù)學(xué)世界表述求解解釋驗(yàn)證根據(jù)建模目的和信息將實(shí)際問題“翻譯”成數(shù)學(xué)問題選擇適當(dāng)?shù)臄?shù)學(xué)方法求得數(shù)學(xué)模型的解答將數(shù)學(xué)語言表述的解答“翻譯”回實(shí)際對(duì)象用現(xiàn)實(shí)對(duì)象的信息檢驗(yàn)得到的解答實(shí)踐理論實(shí)踐第二十七頁(yè),共三十頁(yè),2022年,8月28日1.5
數(shù)學(xué)模型的特點(diǎn)和分類模型的逼真性和可行性模型的漸進(jìn)性模型的強(qiáng)健性模型的可轉(zhuǎn)移性模型的非預(yù)制性模型的條理性模型的技藝性模型的局限性
數(shù)學(xué)模型的特點(diǎn)第二十八
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《初中歷史人物教學(xué)探究》14000字(論文)】
- 2024年學(xué)校安全工作總結(jié)參考(四篇)
- 2024年學(xué)困生幫扶工作計(jì)劃例文(三篇)
- 2024年司機(jī)崗位職責(zé)模版(五篇)
- 2024年大學(xué)秘書部工作計(jì)劃(四篇)
- 2024年商品混凝土運(yùn)輸合同(三篇)
- 2024年學(xué)前班班主任的工作計(jì)劃樣本(三篇)
- 2024年小學(xué)跳繩興趣小組活動(dòng)計(jì)劃(二篇)
- 2024年小班班級(jí)工作總結(jié)(三篇)
- 鋰硫電池行業(yè)專利分析報(bào)告
- CA碼生成原理及matlab程序?qū)崿F(xiàn)
- 新視野大學(xué)英語視聽說教程ppt課件
- 攻城掠地?cái)?shù)據(jù)以及sdata文件修改教程
- 醫(yī)療廢物轉(zhuǎn)運(yùn)箱消毒記錄表
- 最新投標(biāo)書密封條
- 看守所崗位職責(zé)
- Sentaurus在ESD防護(hù)器件設(shè)計(jì)中的應(yīng)用PPT課件
- 《拋物線焦點(diǎn)弦的性質(zhì)探究》學(xué)案
- 人教版小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案【表格式】
- 佛山嶺南新天地項(xiàng)目概況.
- 噴碼機(jī)操作手冊(cè)
評(píng)論
0/150
提交評(píng)論