![湖北省宜昌市長陽一中2023年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第1頁](http://file4.renrendoc.com/view/0787b0cf5776629b252947322c7865bc/0787b0cf5776629b252947322c7865bc1.gif)
![湖北省宜昌市長陽一中2023年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第2頁](http://file4.renrendoc.com/view/0787b0cf5776629b252947322c7865bc/0787b0cf5776629b252947322c7865bc2.gif)
![湖北省宜昌市長陽一中2023年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第3頁](http://file4.renrendoc.com/view/0787b0cf5776629b252947322c7865bc/0787b0cf5776629b252947322c7865bc3.gif)
![湖北省宜昌市長陽一中2023年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第4頁](http://file4.renrendoc.com/view/0787b0cf5776629b252947322c7865bc/0787b0cf5776629b252947322c7865bc4.gif)
![湖北省宜昌市長陽一中2023年高一數(shù)學(xué)第二學(xué)期期末預(yù)測試題含解析_第5頁](http://file4.renrendoc.com/view/0787b0cf5776629b252947322c7865bc/0787b0cf5776629b252947322c7865bc5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,已知tan=sinC,則△ABC的形狀為()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形2.如圖,網(wǎng)格紙的小正方形的邊長是,在其上用粗實線和粗虛線畫出了某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.3.在某種新型材料的研制中,實驗人員獲得了下列一組實驗數(shù)據(jù):現(xiàn)準(zhǔn)備用下列四個函數(shù)中的一個近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個是()345.156.1264.04187.51218.01A. B. C. D.4.在△ABC中,角A,B,C的對邊分別為a,b,c,若,,則在方向上的投影為()A.1 B.2 C.3 D.45.已知集合A={x︱x>-2}且,則集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.6.已知非零向量滿足,且,則與的夾角為A. B. C. D.7.若圓心坐標(biāo)為的圓,被直線截得的弦長為,則這個圓的方程是()A. B.C. D.8.在正方體中,與棱異面的棱有()A.8條 B.6條 C.4條 D.2條9.若,且,恒成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且關(guān)于的方程有實數(shù)根,則與的夾角的取值范圍是______.12.設(shè)數(shù)列()是等差數(shù)列,若和是方程的兩根,則數(shù)列的前2019項的和________13.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.14.函數(shù)的單調(diào)增區(qū)間是________.15.已知向量,若,則_______16.在中,若,則等于__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.為了研究某種藥物,用小白鼠進行試驗,發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.18.已知直線和.(1)若與互相垂直,求實數(shù)的值;(2)若與互相平行,求與與間的距離,19.近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進劑的質(zhì)量為,去除推進劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動機噴流相對火箭的速度,假設(shè),,,是以為底的自然對數(shù),,.(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數(shù)點后面1位).(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點后面1位)?由此指出其實際意義.20.如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個出入口設(shè)置在點及點處,且小區(qū)里有一條平行于的小路.(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(精確到米)(2)若該扇形的半徑為,已知某老人散步,從沿走到,再從沿走到,試確定的位置,使老人散步路線最長.21.設(shè)的內(nèi)角為所對的邊分別為,且.(1)求角的大??;(2)若,求的周長的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
解:因為選C2、A【解析】
根據(jù)三視圖,還原空間結(jié)構(gòu)體,根據(jù)空間結(jié)構(gòu)體的特征及球、棱錐的體積公式求得總體積.【詳解】根據(jù)空間結(jié)構(gòu)體的三視圖,得原空間結(jié)構(gòu)體如下圖所示:該幾何體是由下面半球的和上面四棱錐的組成由三視圖的棱長及半徑關(guān)系,可得幾何體的體積為所以選A【點睛】本題考查了三視圖的簡單應(yīng)用,空間結(jié)構(gòu)體的體積求法,屬于中檔題.3、A【解析】
由表中的數(shù)據(jù)分析得:自變量基本上是等速增加,相應(yīng)的函數(shù)值增加的速度越來越快,結(jié)合基本初等函數(shù)的單調(diào)性,即可得出答案.【詳解】對于A:函數(shù)在是單調(diào)遞增,且函數(shù)值增加速度越來越快,將自變量代入,相應(yīng)的函數(shù)值,比較接近,符合題意,所以正確;對于B:函數(shù)值隨著自變量增加是等速的,不合題意;對于C:函數(shù)值隨著自變量的增加比線性函數(shù)還緩慢,不合題意;選項D:函數(shù)值隨著自變量增加反而減少,不合題意.故選:A.【點睛】本題考查函數(shù)模型的選擇和應(yīng)用問題,解題的關(guān)鍵是掌握各種基本初等函數(shù),如一次函數(shù),二次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)的圖像與性質(zhì),屬于基礎(chǔ)題.4、A【解析】
根據(jù)正弦定理,將已知條件進行轉(zhuǎn)化化簡,結(jié)合兩角和差的正弦公式可求,根據(jù)在方向上的投影為,代入數(shù)值,即可求解.【詳解】因為,所以,即,即,因為,所以,所以,所以在方向上的投影為:.故選:A.【點睛】本題主要考查正弦定理和平面向量投影的應(yīng)用,根據(jù)正弦定理結(jié)合兩角和差的正弦公式是解決本題的關(guān)鍵,屬于中檔題.5、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合題意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合題意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,與題意相符,
故選D.6、B【解析】
本題主要考查利用平面向量數(shù)量積計算向量長度、夾角與垂直問題,滲透了轉(zhuǎn)化與化歸、數(shù)學(xué)計算等數(shù)學(xué)素養(yǎng).先由得出向量的數(shù)量積與其模的關(guān)系,再利用向量夾角公式即可計算出向量夾角.【詳解】因為,所以=0,所以,所以=,所以與的夾角為,故選B.【點睛】對向量夾角的計算,先計算出向量的數(shù)量積及各個向量的摸,在利用向量夾角公式求出夾角的余弦值,再求出夾角,注意向量夾角范圍為.7、B【解析】
設(shè)出圓的方程,求出圓心到直線的距離,利用圓心到直線的距離、半徑和半弦長滿足勾股定理,求得圓的半徑,即可求得圓的方程,得到答案.【詳解】由題意,設(shè)圓的方程為,則圓心到直線的距離為,又由被直線截得的弦長為,則,所以所求圓的方程為,故選B.【點睛】本題主要考查了圓的方程的求解,以及直線與圓的弦長的應(yīng)用,其中解答中熟記直線與圓的位置關(guān)系,合理利用圓心到直線的距離、半徑和半弦長滿足勾股定理是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、C【解析】
在正方體12條棱中,找到與平行的、相交的棱,然后計算出與棱異面的棱的條數(shù).【詳解】正方體共有12條棱,其中與平行的有共3條,與與相交的有共4條,因此棱異面的棱有條,故本題選C.【點睛】本題考查了直線與直線的位置關(guān)系,考查了異面直線的判斷.9、A【解析】
將代數(shù)式與相乘,展開式利用基本不等式求出的最小值,將問題轉(zhuǎn)化為解不等式,解出即可.【詳解】由基本不等式得,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,所以,的最小值為.由題意可得,即,解得.因此,實數(shù)的取值范圍是,故選A.【點睛】本題考查基本不等式的應(yīng)用,考查不等式恒成立問題以及一元二次不等式的解法,對于不等式恒成立問題,常轉(zhuǎn)化為最值來處理,考查計算能力,屬于中等題.10、B【解析】
根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先由得出,再根據(jù)即可求出與的夾角的取值范圍.【詳解】因為關(guān)于的方程有實數(shù)根,所以,即,設(shè)與的夾角為,所以,因為,所以,即與的夾角的取值范圍是【點睛】本題主要考查平面向量的夾角公式的應(yīng)用等,屬基礎(chǔ)題.12、2019【解析】
根據(jù)二次方程根與系數(shù)的關(guān)系得出,再利用等差數(shù)列下標(biāo)和的性質(zhì)得到,然后利用等差數(shù)列求和公式可得出答案.【詳解】由二次方程根與系數(shù)的關(guān)系可得,由等差數(shù)列的性質(zhì)得出,因此,等差數(shù)列的前項的和為,故答案為.【點睛】本題考查等差數(shù)列的性質(zhì)與等差數(shù)列求和公式的應(yīng)用,涉及二次方程根與系數(shù)的關(guān)系,解題的關(guān)鍵在于等差數(shù)列性質(zhì)的應(yīng)用,屬于中等題.13、【解析】
利用誘導(dǎo)公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導(dǎo)公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.14、,【解析】
先利用誘導(dǎo)公式化簡,即可由正弦函數(shù)的單調(diào)性求出。【詳解】因為,所以的單調(diào)增區(qū)間是,?!军c睛】本題主要考查誘導(dǎo)公式以及正弦函數(shù)的性質(zhì)——單調(diào)性的應(yīng)用。15、【解析】
由題意利用兩個向量垂直的性質(zhì),兩個向量的數(shù)量積公式,求得的值.【詳解】因為向量,若,∴,則.故答案為:1.【點睛】本題主要考查兩個向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.16、;【解析】
由條件利用三角形內(nèi)角和公式求得,再利用正弦定理即可求解.【詳解】在中,,,,即,,故答案為:【點睛】本題考查了正弦定理解三角形,需熟記定理的內(nèi)容,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)0.【解析】
(1)藥物在白鼠血液內(nèi)的濃度y與時間t的關(guān)系為:當(dāng)a=1時,y=y(tǒng)1+y2;①當(dāng)0<t<1時,y=﹣t4=﹣()2,所以ymax=f();②當(dāng)1≤t≤3時,∵,所以ymax=7﹣2(當(dāng)t時取到),因為,故ymax=f().(2)由題意y①??,又0<t<1,得出a≤1;②??由于1≤t≤3得到,令,則,所以,綜上得到以0.18、(1)(2)【解析】
(1)根據(jù)直線垂直的公式求解即可.(2)根據(jù)直線平行的公式求解,再利用平行線間的距離公式求解即可.【詳解】解(1)∵與互相垂直,∴,解得.(2)由與互相平行,∴,解得.直線化為:,∴與間的距離.【點睛】本題主要考查了直線平行與垂直以及平行線間的距離公式.屬于基礎(chǔ)題.19、(1)(2)見解析【解析】
(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個等級的速度對應(yīng)的的值;(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的最小值為.【詳解】(1)由題意可得,,,且,,當(dāng)達(dá)到第一宇宙速度時,有,;當(dāng)達(dá)到第二宇宙速度時,有,;當(dāng)達(dá)到第三宇宙速度時,有,.(2)因為希望達(dá)到,但火箭起飛質(zhì)量最大值為,,,即,得,的最小值為比較(1)中當(dāng)達(dá)到第三宇宙速度時,;火箭起飛質(zhì)量為,此時,達(dá)到,但火箭起飛質(zhì)量最大值為,的最小值為.由以上說明實際意義為:不是火箭的推進劑質(zhì)量越大,火箭達(dá)到的速度越大,當(dāng)減少推進劑質(zhì)量,增大火箭發(fā)動機噴流相對火箭的速度,同樣可以達(dá)到想要的速度.【點睛】本題是一個典型的數(shù)學(xué)模型的應(yīng)用問題,用數(shù)學(xué)的知識解決實際問題,這類題目關(guān)鍵是弄清題意;建立適當(dāng)?shù)暮瘮?shù)模型進行解答.屬于中檔題.20、(1)445米;(2)在弧的中點處【解析】
(1)假設(shè)該扇形的半徑為米,在中,利用余弦定理求解;(2)設(shè)設(shè),在中根據(jù)正弦定理,用和表示和,進而利用和差公式和輔助角公式化簡,再根據(jù)三角函數(shù)的性質(zhì)求最值.【詳解】(1)方法一:設(shè)該扇形的半徑為米,連接.由題意,得(米),(米),在中,即,解得(米)方法二:連接,作,交于,由題意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)連接,設(shè),在中,由正弦定理得:,于是,則,所以當(dāng)時,最大為,此時在弧的中點處.【點睛】本題考查正弦定理,余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能倉儲物流系統(tǒng)升級改造合同
- 農(nóng)業(yè)機械批發(fā)商管理與運營策略考核試卷
- 醫(yī)療影像設(shè)備硬件制造考核試卷
- 新材料研發(fā)及生產(chǎn)合同書
- 跨文化傳播活動策劃執(zhí)行合同
- 建筑裝飾與城市發(fā)展考核試卷
- 城市大氣污染監(jiān)測與評價考核試卷
- 影視設(shè)備生產(chǎn)自動化改造考核試卷
- 市場調(diào)查與兒童玩具安全教育考核試卷
- 農(nóng)產(chǎn)品質(zhì)量安全保障策略加強路徑考核試卷
- 廣西南寧市2024-2025學(xué)年八年級上學(xué)期期末義務(wù)教育質(zhì)量檢測綜合道德與法治試卷(含答案)
- 復(fù)工復(fù)產(chǎn)六個一方案模板
- 碳納米管應(yīng)用研究
- 運動技能學(xué)習(xí)與控制課件第十一章運動技能的練習(xí)
- 蟲洞書簡全套8本
- 2023年《反電信網(wǎng)絡(luò)詐騙法》專題普法宣傳
- 小學(xué)數(shù)學(xué)五年級上、下冊口算題大全
- 和平精英電競賽事
- 高標(biāo)準(zhǔn)農(nóng)田施工組織設(shè)計(全)
- 職業(yè)安全健康工作總結(jié)(2篇)
- 14S501-1 球墨鑄鐵單層井蓋及踏步施工
評論
0/150
提交評論